Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)
Xét VP \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)
Từ (1) và (2) ->Đpcm
b)Gọi \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Xét VP \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2)-> ĐPcm
Chứng minh nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
Thì a + b + c + d = 0
Hoặc a = c
Giúp mình với ^_^
ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
=>(a+b)(a+d)=(b+c)(c+d)
=> a2 + ab+ad+bd=bc+c2+bd+cd
=>a2+ab+ad-bc-c2-cd=0
=>(a2-c2)+(ad-cd)+(ab-bc)=0
=>(a-c)(a+c)+d(a-c)+b(a-c)=0
=>(a-c)(a+b+c+d)=0
\(\rightarrow\orbr{\begin{cases}a-c=0\rightarrow a=c\\a+b+c+d=0\end{cases}}\)(đpcm)
Vậy...
chúc bn hc tốt
Ta có : a+b/b+c=c+d/d+a
=> (a+b)/(c+d) = (b+c)/(d+a)
=> (a+b)/(c+d)+1=(b+c)/(d+a)+1
hay (a+b+c+d)/(c+d)=(b+c+d+a)/(d+a)
*TH1 a+b+c+d khác 0 thì c+d=d+a => a=c (1)
*TH2 a+b+c+d=0 (2)
Từ (1) và (2) => a+b+c+d=0 và a=c (đpcm)
Bài làm
Giả sử: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với ab, ta được
ad + ab > bc + ab
=> a( b + d ) > b( a + c )
\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với dc, ta được:
ad + dc > bc + dc
=> d( a + c ) > c( b + d )
\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )
a) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) Ta co: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{a}{b}\)
Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)
\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)
ta có \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)
=>\(\left(a+b\right)\left(a+d\right)=\left(c+d\right)\left(b+c\right)\)
=> \(a^2+ab+ad+bd=c^2+bc+bd+cd\)
=>\(a^2+ab+ad-bc-c^2-cd=0\)
=>\(\left(a^2-c^2\right)+\left(ab-cd\right)+\left(ab-ac\right)=0\)
=>\(\left(a-c\right)\left(a+c\right)+d\left(a-c\right)+b\left(a-c\right)=0\)
=>\(\left(a-c\right)\left(a+b+c+d\right)=0\)
=>\(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}\left(dpcm\right)}\)
hacker 2k6
Với \(a,b,c,d\ne0\) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\Rightarrow\frac{a-b}{c-d}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) Ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)
b) Ta có:
\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)
\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)
c) Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)
\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)
cảm ơn nhé