K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

xem lại đề nha

3 tháng 8 2018

đề bị sai lỗi chính tả kìa

13 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\)

Đặt:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+....+a_{2018}}=k\)

\(\circledast\)\(\left(\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\right)^{2017}=k^{2017}\)

\(\circledast\) \(\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}....\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1}{a_{2018}}=k^{2017}\)

Ta có đpcm

8 tháng 7 2018

Ta có ;

\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{\left(a1\right)^{2017}}{\left(a2\right)^{2017}}\\ =\dfrac{a1\cdot a2\cdot a3\cdot...\cdot a2017}{a2\cdot a3\cdot a4\cdot...\cdot a2018}=\dfrac{a1}{a2018}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{a1}{a2}=\dfrac{a2}{a3}=.....=\dfrac{a2017}{a2018}=\dfrac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}\left(2\right)\)

Từ (1) và (2) ⇒ Đpcm

25 tháng 11 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=....=\dfrac{a_{2000}}{a_{2001}}=\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\)

\(\Rightarrow\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}......\dfrac{a_{2000}}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)

\(\Rightarrow\dfrac{a_1}{a_{2001}}=\left(\dfrac{a_1+a_2+a_3+....+a_{2000}}{a_2+a_3+a_4+....+a_{2001}}\right)^{2000}\)(đpcm)

8 tháng 8 2017

Theo tính chất của dãy tỉ số bằng nha, ta có :

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)

\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

.................................

\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)

\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)

Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)

~ Học tốt ~

3 tháng 1 2017

Hoàng Lê Bảo Ngọc, Trương Hồng Hạnh, Trần Việt Linh, Nguyễn Huy Tú

3 tháng 1 2017

Giải:

Ta có: \(\frac{a_1}{a_{2018}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2017}}{a_{2018}}=-5^{2017}\)

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2017}}{a_{2018}}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\)

\(S=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}=\frac{a_1}{a_2}=-5\)

Vậy S = -5

Mn xem t lm đúng khống nhé! T không chắc lắm

15 tháng 1 2017

Ta có :

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) \(\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow S=5\)

Vậy : \(S=5\)