Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề A sai
Phản ví dụ: vì C bất kì nên \(B\cap C\) có thể bằng rỗng, mà \(A\cap B=A\) nên nếu \(A\ne\varnothing\) thì \(A\cap B\) không phải con của \(B\cap C\)
a) A ⊂ C Ta có x chia hết cho 12 => x chia hết cho 3 và 4 => đpcm
B ⊂ C Ta có x chia hết cho 12 mà 12 chia hết cho 6 => đpcm
b) A ∪ B = { x ∈ N | x chia hết cho 4 và x chia hết cho 6 }
Vì x chia hết cho 6 và 4 => x chia hết 12 => đpcm
c ) Với x=4 thì x chia hết cho 4 thỏa mãn A
x không chia hết cho 6 không thỏa mãn B
=>A không phải là con của B.
\(A\cap B=A\) ; \(B\cap C=B\)
\(\Rightarrow\left(A\cap B\right)\cup\left(B\cap C\right)=A\cup B=B\) (đáp án A đúng)
\(B\backslash C=\varnothing\Rightarrow A\cup\left(B\backslash C\right)=A\) (B cũng đúng)
\(A\backslash\left(B\cap C\right)=A\backslash B=\varnothing\) (C đúng)
Vậy D sai
\(\left(A\cap C\right)\cup B=A\cup B=B\) chứ ko phải C
E={0;1;2;3;4;5;6;7;8}
\(C_E^{A\cup B}=E\backslash\left(A\cup B\right)=E\backslash\left\{1;3;5;7;2;6\right\}=\left\{0;4\right\}\)
\(C_E^{A\cap B}=E\backslash\left\{1;3\right\}=\left\{0;2;4;5;6;7;8\right\}\)
=>\(C_E^{A\cup B}\subset C_E^{A\cap B}\)
a/ \(\left\{1;2\right\};\left\{1;2;3\right\};\left\{1;2;4\right\};\left\{1;2;5\right\};\left\{1;2;3;4;5\right\}\)
b/ \(\left\{1;2;3;4\right\}\)