Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
\(A=1+3+5+7+...+n\) ( n lẻ )
Số số hạng :
\(\frac{n-1}{2}+1=\frac{n-1+2}{2}==\frac{n+1}{2}\) ( số hạng )
Suy ra :
\(A=\frac{\left(n+1\right).\frac{n+1}{2}}{2}=\frac{\left(n+1\right)\left(n+1\right)}{2}:2=\frac{\left(n+1\right)^2}{2}.\frac{1}{2}=\frac{\left(n+1\right)^2}{2^2}=\left(\frac{n+1}{2}\right)^2\)
Vậy A là số chính phương
Chúc bạn học tốt ~
Giả sử 2 số trong 3 số không bằng nhau :
a < b (1)
Trong hai lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
Vì vậy :
Do : ab = bc mà a < b \( \implies\) c < b
Ta có : bc = ca mà c < b \( \implies\) c < a
Ta có : ca = ab mà c < a \( \implies\) a > b (2)
Từ (1) ; (2) \( \implies\) Mâu thuẫn
\( \implies\) a = b = c (đpcm)
1)Đặt n + 1945 = a² (1) (a là số tự nhiên)
Đặt n + 2004 = b² (2) (b là số tự nhiên)
Do (n + 2004) > (n + 1945)
=> b² > a²
=> b > a (Do a và b là số tự nhiên)
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945)
<=> (b + a)(b - a) = n + 2004 - n - 1945
<=> (b + a)(b - a) = 59
=> (b + a) và (b - a) là ước tự nhiên của 59
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có:
b + a = 59 (3) và b - a = 1 (4)
cộng vế với vế của (3) và (4) ta được:
(b + a) + (b - a) = 59 + 1
<=> b + a + b - a = 60
<=> 2b = 60
<=> b = 30
Thay b = 30 vào (2) ta được
n + 2004 = 30²
<=> n + 2004 = 900
<=> n = 900 - 2004
<=> n = -1104
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương
=> p^2 = (m-1)(m+n). => m+n thuộc ước dương của p^2 . mà p là số nguyên tố => m+n thuộc p,1,p^2. mà m+n> m-1=> m+n = p^2 => m-1 =1 => m=2=> p^2 = n+2(đpcm)