K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

[ab(ab-2cd)+cd ] [ab(ab-2)+2(ab+1)=0<=>(a2b2-2abcd+c2d2)(a2b2-2ab+2ab+2)=0

<=>[(a2b2 - abcd)+(-abcd+c2d2)](a2b2+2)=0<=>ab(ab-cd)-cd(ab-cd)=0(vì a2b2 > 0)

<=>(ab-cd)2=0<=>ab=cd

1 tháng 1 2016

haiz,ko ai làm được ak?

9 tháng 10 2015

 [ab(ab - 2cd) + c2d2].[ab(ab - 2) + 2(ab + 1)] = 0 

=>  ab(ab - 2cd) + c2d2 = 0 hoặc ab(ab - 2) + 2(ab + 1) = 0 

+)  ab(ab - 2cd) + c2d= 0  => (ab)2 - 2(ab).(cd) + (cd)2 = 0 => (ab)2 - (ab).(cd) - (ab).(cd) + (cd)2 = 0 

=> (ab - cd).(ab - cd) = 0 => (ab - cd)2 = 0 => ab - cd = 0 => ab = cd => \(\frac{a}{c}=\frac{d}{b}\) => a; b; c;d lập được thành 1 tỉ lệ thức

+) ab(ab - 2) + 2(ab + 1) = 0  => (ab)2 + 2 = 0  (Vô lí, vì (ab)2 + 2 > 0 với mọi a; b)

Vậy..................

27 tháng 10 2016

[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0

⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.

9 tháng 10 2016

<=>(a2b2-2abcd+c2d2)(a^2*b^2-2ab+2ab+2)=0

<=>(ab-cd)^2.(a^2*b^2+2)=0

<=>ab-cd=0            (vì a^2*b^2+2>0 với mọi a,b)

nên a/c=b/d

6 tháng 9 2019

cái này trong đề h.s giỏi lớp 7 nè tui làm r cả đề :)

Ta có:

\left[ab\left(ab-2cd\right)+c^2d^2\right].\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]=0[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0

\Leftrightarrow\left(a^2b^2-2acbd+c^2d^2\right).\left(a^2b^2-2ab+2ab+2\right)=0⇔(a2b2−2acbd+c2d2).(a2b2−2ab+2ab+2)=0

\Leftrightarrow\left(ab-cd\right)^2.\left(a^2b^2+2\right)=0⇔(abcd)2.(a2b2+2)=0

Vì a^2b^2+2&gt;0\forall a;ba2b2+2>0∀a;b

\Leftrightarrow\left(ab-cd\right)^2=0⇔(abcd)2=0

\Leftrightarrow ab-cd=0⇔abcd=0

\Leftrightarrow ab=cd\left(đpcm\right)⇔ab=cdpcm)

24 tháng 1 2020

\( \left[ {ab\left( {ab - 2cd} \right) + {c^2}{d^2}} \right].\left[ {ab\left( {ab - 2} \right) + 2\left( {ab + 1} \right)} \right] = 0\\ \Leftrightarrow \left[ {\left( {{a^2}{b^2} - abcd} \right) + \left( { - abcd + {c^2}{d^2}} \right)} \right]\left( {{a^2}{b^2} + 2} \right) = 0\\ \Leftrightarrow ab\left( {ab - cd} \right) - cd\left( {ab - cd} \right) = 0\left( {do:{a^2}{b^2} + 2 > 0} \right)\\ \Leftrightarrow {\left( {ab - cd} \right)^2} = 0 \Leftrightarrow ab - cd = 0 \Leftrightarrow ab = cd \)

Ta có điều phải chứng minh

24 tháng 1 2020

28 tháng 11 2018

Ta có: 

\(\left[ab\left(ab-2cd\right)+c^2d^2\right]\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]\)

\(=\left(a^2b^2-2abcd+c^2d^2\right)\cdot\left(a^2b^2-2ab+2ab+2\right)\)

=\(\left(ab-cd\right)^2\left(a^2b^2+2\right)=0\)

Vif \(a^2b^2+2>0\)nên \(ab-cd=0\Leftrightarrow ab=cd\)

Suy ra 4 tỉ lên thức:

\(\orbr{\begin{cases}\frac{a}{c}=\frac{d}{b}\\\frac{b}{c}=\frac{d}{a}\end{cases} và} \orbr{\begin{cases}\frac{a}{d}=\frac{c}{b}\\\frac{b}{d}=\frac{c}{a}\end{cases}}\)

28 tháng 11 2018

Tỉ lên thức là gì vậy bạn?

20 tháng 10 2015

http://olm.vn/hoi-dap/question/228341.html    ở đây nè

21 tháng 10 2016

ầy sai đề nha