K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử góc A < góc D. Chứng minh AC > BD

Dựng tia AE sao cho: góc DAE = góc ADC để được hình thang cân ADCE.

Ta có: góc AEC = góc DCE và AC = DE

Ta có: góc EBD > góc DCB > góc DEB

=> ED > BD => AC > BD

5 tháng 2 2017

E B C A D

Giải

Giả sử góc A < góc D. Chứng minh AC > BD

Dựng tia AE sao cho: góc DAE = góc ADC để được hình thang cân ADCE.

Ta có: góc AEC = góc DCE và AC = DE

Ta có: góc EBD > góc DCB > góc DEB

=> ED > BD => AC > BD

13 tháng 7 2018

A B C E D

a, Trong hình thang ABCD (AB // CD), kẻ BE // AD

Ta có: BE = AD, AB = DE  (hình thang có 2 cạnh bên song song)

Xét t/g BEC có: BE + BC > EC (BĐT tam giác)

=> AD + BC > CD - DE hay AD + BC > CD - AB (đpcm)

b, Xét t/g BEC có: EC < |BC - BE| 

=> CD - AB < |BC - AD| (đpcm)

A B F C D

c,Kẻ BF // AC

=> AB = CF ; AC = BF (hình thang có 2 cạnh bên song song)

Xét t/g BDF có: BD + BF > DF (BĐT tam giác)

=> BD + AC > DF

=> BD + AC > DC + CF

=> BD + AC > DC + AB (đpcm)

14 tháng 7 2018

Thanks bạn nha!