Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E B C A D
Giải
Giả sử góc A < góc D. Chứng minh AC > BD
Dựng tia AE sao cho: góc DAE = góc ADC để được hình thang cân ADCE.
Ta có: góc AEC = góc DCE và AC = DE
Ta có: góc EBD > góc DCB > góc DEB
=> ED > BD => AC > BD
A B C E D
a, Trong hình thang ABCD (AB // CD), kẻ BE // AD
Ta có: BE = AD, AB = DE (hình thang có 2 cạnh bên song song)
Xét t/g BEC có: BE + BC > EC (BĐT tam giác)
=> AD + BC > CD - DE hay AD + BC > CD - AB (đpcm)
b, Xét t/g BEC có: EC < |BC - BE|
=> CD - AB < |BC - AD| (đpcm)
A B F C D
c,Kẻ BF // AC
=> AB = CF ; AC = BF (hình thang có 2 cạnh bên song song)
Xét t/g BDF có: BD + BF > DF (BĐT tam giác)
=> BD + AC > DF
=> BD + AC > DC + CF
=> BD + AC > DC + AB (đpcm)
Giả sử góc A < góc D. Chứng minh AC > BD
Dựng tia AE sao cho: góc DAE = góc ADC để được hình thang cân ADCE.
Ta có: góc AEC = góc DCE và AC = DE
Ta có: góc EBD > góc DCB > góc DEB
=> ED > BD => AC > BD