Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này có 2 cách : biến dổi tương đương và áp dụng bất đẳng thức Bu-ni-a
Biến đổi tương đương : \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
Chuyển vế phải qua vế trái rút gọn lại ta được : \(a^2y^2-2axby+b^2x^2=0\)
=>\(\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)
chứng minh rằng nếu ( a2+b2) . (x 2+y2) = (a x +by)2với x ; y khác 0 thì \(\frac{a}{x}=\frac{b}{y}\)
(a^2 + b^2 )(x^2 + y^2 ) = ( a x+ by)^2
=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2
=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 - a^2x^2 - 2abxy - b^2y^2 = 0
=> a^2y^2 - 2aybx + b^2x^2 = 0
=> ( ay - bx)^2 = 0
=> ay - bx = 0
=> ay = bx
=> \(\frac{a}{x}=\frac{b}{y}\)
tính hiệu của vế trái và vế phải ta được (ay-bx)^2=0 nên ay=bx. Do x, y khác 0 nên a/x=b/y
Sửa đề thành vầy mới làm dc bạn\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2-2axby-2bycz-2axcz=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz+c^2y^2=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
\(\Rightarrow ay-bx=0,az-cx=0,bz-cy=0\)
\(\Rightarrow ay=bx,az=cx,bz=cy\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y},\frac{a}{x}=\frac{c}{z},\frac{b}{y}=\frac{c}{z}\)
\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(dpcm\right)\)
Chúc bạn học tốt . Chọn cho mình nha cảm ơn
Bài 1:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2-2abxy=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
\(\Rightarrowđpcm\)
Bài 2:
Ta có: \(VT=\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=25a^2-30ab+9b^2-64c^2\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\left(a^2-b^2=4c^2\right)\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2=VP\)
\(\Rightarrowđpcm\)