Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
a) => 2a^2 + 2b^2 = 2ab + 2ba
=> 2a^2 + 2b^2 - 2ab - 2ba = 0
=> (a-b)^2 + (a-b)^2 = 0
=> 2(a-b)^2 = 0
=> a-b = 0
=> a = b
b) Nhân hai vế với 2 và làm tương tự câu a)
=> (a-b)^2 + (b-c)^2 + (a-c)^2 = 0
=> a = b = c
Theo đề bài có :
\(a^2+b^2+c^2=ab+bc+ac\)
Ta lại có :
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow a-b=b-c=a-c=0\)
\(\Rightarrow a=b=c\)(đpcm)
chứng minh rằng nếu : A2+B2+C2=AB+BC+AC
thì A=B=C
chứng minh càng chi tiết càng tốt nha các bạn cám ơn
Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!
Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
TA có
( a+ b+ c )^2 = 3 (ab+bc+ ac)
=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ac = 3ab + 3ac + 3bc
=> a^2 + b^2 + c^2 -ab- bc - ac = 0
=>2 ( a^2 + b^2 + c^2 - ab-bc-ac) = 0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + c^2 - 2ac + a^ 2 = 0
=> ( a - b)^2 +( b -c )^2 + ( c -a )^2 = 0
=> a- b = 0 và b - c = 0 và c - a = 0
=> a= b và b = c và c =a
VẬy a= b= c
(a + b + c)^2=3(ab+ac+bc)
<=>a^2 +b^2+c^2+2ab+2ac+2bc -3ab-3ac-3bc=0
<=>a^2+b^2+c^2-ab-ac-bc=0
<=> 2a^2+2b^2+2c^2-2ab-2ac-2bc=0
<=> (a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ca + a^2) = 0
<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0
<=> a = b = c