K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

LÀM BẠN NHA

15 tháng 6 2018

Sửa đề: cm A<0

\(A=\left(a^2-b^2+c^2\right)^2-4a^2c^2\)

\(=\left(a^2-b^2+c^2\right)^2-\left(2ac\right)^2\)

\(=\left(a^2-b^2+c^2+2ac\right)\left(a^2-b^2+c^2-2ac\right)\)

\(=\left[\left(a+c\right)^2-b^2\right]\left[\left(a-c\right)^2-b^2\right]\)

\(=\left(a+c-b\right)\left(a+c+b\right)\left(a-c-b\right)\left(a-c+b\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên: a+b+c > 0

a+c>b => a+c-b > 0

c+b>a=>a-(c+b)=a-c-b < 0

a+b>c => a+b-c > 0

Do đó: (a+c-b)(a+b+c)(a-c-b)(a-c+b) < 0 hay A<0 (đpcm)

5 tháng 2 2021

tham khảo:        Câu hỏi của Nguyễn Thùy Trang     

https://olm.vn/hoi-dap/detail/240354680477.html

10 tháng 8 2020

Dễ thấy a,b,c là độ dài của tam giác nên

a + b - c > 0 ; b + c - a > 0 ; c+a-b > 0

Theo Cauchy-Schwarz thì

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi a=b=c = 1

10 tháng 8 2020

Ta có: Vì chu vi của tam giác là 3 nên a + b + c = 3

Xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)

Tương tự CM được:

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\) và \(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)

Cộng vế 3 BĐT trên lại ta được:

\(2VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3^2}{a+b+c}=\frac{9}{3}=3\)

Dấu "=" xảy ra khi: \(a=b=c\)

18 tháng 7 2018

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...