K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Ta có:

\(\overline{abc}\)

= 100a + 10b + c

= 96a + 4a + 8b + 2b + c

= 8(12a + b) + (4a +2b + c)

\(\overline{abc}\) \(⋮\) 8

\(\Rightarrow\) 8(12a + b) + (4a + 2b + c) \(⋮\) 8

Mà 8(12a + b) \(⋮\) 8

\(\Rightarrow\) 4a + 2b + c \(⋮\) 8 (đpcm)

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

27 tháng 8 2019

1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)

a: Điều kiện cần để n*n chia hết cho 3 là n là số tự nhiên và điều kiện đủ là n chia hết cho 3

b: Điều kiện cần để n*n chia hết cho 6 là n là số tự nhiên và điều kiện đủ là n chia hết cho 2 và 3

c: Điều kiện cần và đủ để a+b>4 là một trong 2 số a và b phải lớn hơn 2

21 tháng 7 2019

Chị xem thử ở đây (Em không chắc đúng đâu nha): Câu hỏi của Cao Thi Thuy Duong - Toán lớp 10 | Học trực tuyến

21 tháng 7 2019

Chứng minh dễ mà cần gì tham khảo

21 tháng 7 2019

Giả sử a^2 + b^2 chia hết cho 8 và a , b đồng thời là số lẻ

\(\Rightarrow a=2k+1\)\(b=2k+1\)

Khi đó: \(a^2+b^2=\left(2k+1\right)^2+\left(2k+1\right)^2\)

\(\Leftrightarrow4k^2+4k+1+4k^2+4k+1\)

\(\Leftrightarrow8k^2+8k+2\)

\(\Leftrightarrow8k\left(k+1\right)+2⋮̸8\) Mâu thuẫn với giả thiết

\(\Rightarrow a^2+b^2⋮8\) , a , b không đồng thời là số lẻ ( đpcm )

25 tháng 7 2019

svtkvtmLuân ĐàoNguyễn Thành Trươngphynit mọi người giải thích hộ em được ko ạ? đã biết rằng a và b bằng nhau đâu mà...?

29 tháng 9 2019

                                                          Bài giải

Ta có : Nếu  \(n\text{ }⋮\text{ }5\)

\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)

29 tháng 9 2019

Đây là toán lớp 6 nha !

                                                        Bài giải

Ta có : Nếu  \(n\text{ }⋮\text{ }5\)

\(\Rightarrow\text{ }n^2=n\cdot n\text{ là bội của }n\text{ }\Rightarrow\text{ }n^2\text{ }⋮\text{ }5\)

25 tháng 10 2017

bắt quả tang tra mạng nhá