Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a là chẵn=>(a-2) là số chẵn mà số chan nhân mấy cũng là số chẵn
Nếu a là lẻ=>(a+3) là số chẵn mà số chan nhân mấy cũng là số chẵn
Vậy n là số chẵn
Q = (a - 2)(a + 3) - (a - 3)(a + 2)
- Nếu a là số lẻ
thì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra lẻ * chẵn - chẫn * lẻ = chẵn - chẵn = chẵn (1)
- Nếu a là số chẵn
thì (a - 2)(a + 3) - (a - 3)(a + 2) suy ra chẵn * lẻ - lẻ * chẵn = chẵn - chẵn = chẵn (2)
Từ (1) và (2) suy ra đpcm
a, 20 + 8.( x + 3 ) = 5^2 .4
20 + 8. ( x + 3 ) = 25 . 4
20 + 8. ( x + 3 ) = 100
8. ( x + 3 ) = 100 - 20
8 . ( x + 3 ) = 80
x + 3 = 80 : 8
x + 3 = 10
x = 10 - 3
x = 7
Vậy x = 7
b, /x+4/ - 12 = -6
/x+4/ = -6 + 12
/x+4/ = 6
x+4 ∈ { 6 ; -6 }
x ∈ { 2 ; -2 }
Vậy x ∈ { 2 ; -2 }
#Học tốt#
10 \(⋮\)2n+1
=> 2n+1 \(\in\)Ư(10) ={ 1;2; 5; 10}
Vì 2n+1 là số lẻ nên 2n+1 \(\in\){ 1; 5}
=> 2n \(\in\){ 0; 4}
=> n \(\in\){ 0; 2}
Vậy...
b) 3n +1 \(⋮\)n-2
=> n-2 \(⋮\)n-2
=> (3n+1) -(n-2) \(⋮\)n-2
=> (3n-1) -3(n-2) \(⋮\)n-2
=> 3n-1 - 3n + 6 \(⋮\)n-2
=> 5\(⋮\)n-2
=> n-2 thuốc Ư(5) ={ 1;5}
=> n thuộc { 3; 7}
Vậy...
a) Vì n thuộc Z => 2n-1 thuộc Z
=> 2n-1 thuộc Ư (10)={-10;-5;-2;-1;1;2;5;10}
Ta có bảng giá trị
2n-1 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
2n | -9 | -4 | -1 | 0 | 2 | 3 | 6 | 11 |
n | \(\frac{-9}{2}\) | -2 | \(\frac{-1}{2}\) | 0 | 1 | \(\frac{3}{2}\) | 3 | \(\frac{11}{2}\) |
Vậy n={-2;0;3}
b) Ta có 3n+1=3(n-2)+7
Để 3n+1 chia hết cho n-2 thì 3(n-2)+7 chia hết cho n-2
Vì 3(n-2) chia hết cho n-2 => 7 chia hết cho n-2
n thuộc Z => n-2 thuộc Z
=> n-2 thuộc Ư (7)={-1;-7;1;7}
Ta có bảng
n-2 | -1 | -7 | 1 | 7 |
n | 1 | -5 | 3 | 9 |
Vậy n={1;-5;3;9}
(a-2)(a-3) chia hết cho 2
(a+2)(a+3) chia hết cho 2
(vì là tích 2 số tự nhiên liên tiếp)
=> N chia hết cho 2 do đó là số chẵn
Đặt VT = (a-2)(a+3)
VP = (a-3)(a+2)
Ta có:
Nếu a chia hết cho 2
< = > a - 2 chẵn
< = > VT chia hết cho 2
< = > a + 2 chẵn
< = > VP chia hết cho 2
< = > VT - VP chia hết cho 2 < = > N chia hết cho 2 <<1>>
Nếu a chia 2 dư 1
< = > a + 3 chẵn
< = > VT chia hết cho 2
< = > a - 3 chẵn
< = > VP chia hết cho 2
< = > VT - VP chia hết cho 2 < = > N chia hết cho 2 <<2>>
Từ <<1>> ; <<2>> => N chẵn
M=a.(a+2)-a.(a-5)-7
M=a.[(a+2)-(a-5)]-7
M=a.7-7
ma M>7 hoac M=0
nên M là bội của 7
nếu a lẻ thì goi a la 2n+1
N=(2n+1-2).(2n+1+3)-(2n+1-3).(2n+1+20)
N=(2n-1).(2n+4)-(2n-2).(2n+21)
N=lẻ nhân chẵn trừ chẵn nhân lẻ
N= chẵn - chẵn = chẵn nên nếu a là số lẻ thì N chẵn
nếu a chẵn thì gọi a là 2n
N=(2n-2).(2n+3)-(2n-3).(2n+20)
N=chẵn nhân lẻ trừ lẻ nhân chẵn
N=chẵn trừ chẵn = chẵn
vậy N là số chẵn với mọi a
a. Ta có: M= a.(a+2)-a.(a-5)-7
=a.(a+2-a+5)-7
= 7.a-7=7.(a -1) chia hết cho 7.
Vậy M là bội của 7(đpcm)
vậy còn bài thứ 2 thì như thế nào ? giải luôn đi bạn
sửa đề: N=(a-2)(a+3)-(a-3)(a+2)
=(a2+3a-2-6)-(a2+2a-3a-6)
=a2+a-6-a2+a+6=2a là số chẵn với mọi a thuộc Z
C1: nếu a chẳn thì (a-2) và (a+20) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
nếu a lẻ thì (a+3) và (a-3) là số chẳn. Do đó (a-2)(a+3) và (a-3)(a+20) chẳn nên N chẳn.
C2:
vì a thuộc Z nên a có thể viết bằng: a = 2n hoặc a = 2n+1.
Nếu a = 2n thì N=(2n-2)(2n+3) - (2n-3)(2n+20) = 2*[(n-1)(2n+3) - (2n-3)(n+10)]. Do đó N là số chẳn.
Nếu a= 2n+1 thì N =(2n+1 -2)(2n+1+3) -(2n+1-3)(2n+1+20) = 2*[(2n-1)(n+1) - (n-1)(2n+21)]. Do đó N là số chẳn.
Kết luận: N chẳn với mọi a.(DPCM)