Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = \(\frac{13}{15}.\frac{11}{3}.\left(-\frac{3}{13}\right)\)
\(\Leftrightarrow\) (xyz)2 = \(-\frac{11}{15}\) (1)
Đẳng thức (1) không xảy ra vì (xyz)2 > 0.
Vậy không tồn tại ba số hữu tỉ x,y,z thỏa mãn điều kiện đề bài.
cho a=x 3y, b=x 2y 2, c=xy 3 .Chung minh rang voi moi so huu ti x va y ta luon duoc ax+b 2-2x 4y 4=0
\(x^2=2\)
\(x=\sqrt{2}\)
Vẫn có thể chuyển được sang số hữu tỉ nhưng chỉ là chưa tìm ra thui:v
Ta có: \(xy=\frac{13}{15}\Rightarrow x=\frac{13}{15y}\)
\(yz=\frac{1}{3}\Rightarrow y=\frac{1}{3z}\)
\(zx=-\frac{3}{13}\Rightarrow z=-\frac{3}{13x}\)
Thay x vào z ta có:
\(z=-\frac{3}{13x}=-\frac{3}{13.\frac{13}{15y}}\)
\(z=-\frac{45y}{169}\)
Thay y vào z ta có:
\(z=\frac{-45.\frac{1}{3}z}{169}\)
\(z=-\frac{15}{169}z\)( vô lý )
\(\Rightarrow\)z không có giá trị
\(\Rightarrow\)x;y không có giá trị
đpcm
Giải :
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = 13/15 .11/3 . ( - 3/13 )
\(\Leftrightarrow\)( xyz )\(^2\)= - 11/15 ( 1 )
Đẳng thức (1) không xảy ra vì (xyz)\(^2\)\(>\)\(0\)
Vậy không tồn tại ba số hữu tỉ x , y , z thỏa mãn điều kiện đề bài
\(xy=\frac{13}{15}\)
\(yz=\frac{1}{3}\)
\(zx=\frac{3}{13}\)
\(\Rightarrow\left(xyz\right)^2=\frac{13}{15}.\frac{1}{3}.\frac{3}{13}=\frac{1}{15}=\frac{1^2}{\left(\sqrt{15}\right)^2}\)
Vì x ; y ; z là các số hữu tỉ nên ( xyz)2 là số hữu tỉ, ta chỉ cần chứng minh \(\sqrt{15}\) không phải số hữu tỉ mà là số vô tỉ.
Giả sử \(\sqrt{15}\) là số hữu tỉ thì coi \(\sqrt{15}=\frac{m}{n}\)( \(\frac{m}{n}\) phải là phân số tối giản)
\(\Rightarrow15=\frac{m^2}{n^2}\)
\(\Rightarrow15n^2=m^2\)
\(\Rightarrow m^2\)chia hết cho 15 = 3 x 5; 3 và 5 là các số nguyên tố nên \(m\) chia hết cho 15.
Đặt \(m=15k\left(k\in Z;k\ne0\right)\)
\(\Rightarrow m^2=\left(15k\right)^2=225k^2\)
\(\Rightarrow15n^2=m^2=225k^2\)
\(\Rightarrow n^2=\frac{225k^2}{15}=15k^2\)
\(\Rightarrow n^2\)chia hết cho 15
\(\Rightarrow n\)chia hết cho 15
Xét phân số \(\frac{m}{n}\)có m và n đều chia hết cho 15 nên không phải phân số tối giản, trái với đề bài. Do đó \(\sqrt{15}\) không phải số hữu tỉ.
Do đó không tồn tại 3 số hữu tỉ x ; y ; z thỏa mãn đề bài.