Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử 2 phân số trên có thể đồng thời là số tự nhiên.
Ta có:
$\frac{7n-1}{4}$ là số tự nhiên
$\Rightarrow 7n-1\vdots 4$
$\Rightarrow 7n-1-8n\vdots 4$
$\Rightarrow -n-1\vdots 4\Rightarrow n+1\vdots 4$
$\Rightarrow n=4t-1$ với $t$ tự nhiên.
Khi đó:
$\frac{5n+3}{12}=\frac{5(4t-1)+3}{12}=\frac{20t-2}{12}$
$=\frac{10t-1}{6}$
Vì $10t-1$ lẻ với mọi $t$ tự nhiên nên $10t-1\not\vdots 2$
$\Rightarrow 10t-1\not\vdots 6$
$\Rightarrow \frac{5n+3}{12}$ không là số tự nhiên (trái với giả sử)
Vậy không thể tồn tại stn $n$ để 2 phân số trên đều là số tự nhiên.
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
mik chưa hok phân số bạn ak nếu mk hok rồi thì mik đã trả lời rôi
sorry nha
Xét hiệu: \(\frac{7n-1}{4}-\frac{5n+3}{12}=\frac{3.\left(7n-1\right)}{12}-\frac{5n+3}{12}\)
\(=\frac{21n-3}{12}-\frac{5n+3}{12}\)
\(=\frac{\left(21n-3\right)-\left(5n+3\right)}{12}\)
\(=\frac{21n-3-5n-3}{12}\)
\(=\frac{16n-6}{12}\)
Do 16n chia hết cho 4; 6 không chia hết cho 4 => 16n - 6 không chia hết cho 4 => \(\frac{16n-6}{12}\)không là số tự nhiên
=> 7n - 1/4 và 5n + 3/12 không đồng thời là số tự nhiên với mọi số nguyên dương n (đpcm)