K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Ta có : \(y'=\cos x.e^{\sin x}\Rightarrow y"=-\sin x.e^{\sin x}+\cos^2x.e^{\sin x}\)

       \(\Rightarrow y"=-\sin x.y+\cos x.y'\Rightarrow y'\cos x-y.\sin x-y"=0\)

=> Điều phải chứng minh

6 tháng 5 2016

\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

20 tháng 3 2016

Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó. 

Để xác định hằng số C ta sử dụng điều kiện F(0)=1

Từ điều kiện này và biểu thức F(x) ta có :

\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)

Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm

5 tháng 5 2016

Nếu một trong các số \(x+y-z;y+z-x;z+x-y\) bằng 0 thì cả 3 số đều bằng 0 và dẫn đến \(x=y=z=0\), mâu thuẫn

Từ giả thiết ta có : \(\begin{cases}x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\\y\log z\left(z+x-y\right)=z\log y\left(x+y-z\right)\\z\log x\left(x+y-z\right)=x\log z\left(y+z-x\right)\end{cases}\)

Xét đẳng thức thứ nhất ta có :

                                               \(x\log y\left(y+z-x\right)=y\log x\left(z+x-y\right)\Leftrightarrow x\log y=y\log x.\frac{z+x-y}{y+z-x}\)                                                               \(\Leftrightarrow x\log y+y\log x=y\log x\left(\frac{z+x-y}{y+z-x}+1\right)\Leftrightarrow x\log y+z\log x=y\log x\frac{2z}{y+z-x}\)

Biến đổi tương tự với đẳng thức thứ hai ta có :

                                             \(y\log z+z\log y=z\log y\frac{2z}{z+z-y}\)

Ta thấy rằng : \(x^y.y^x=y^z.z^y\Leftrightarrow x\log y+y\log x=y\log z+z\log y\)

Do đó ta cần có :

                    \(y\log x\frac{2z}{y+z-x}=z\log y\frac{2z}{z+x-y}\Leftrightarrow y\log x\left(z+x-y\right)=x\log y\left(y+z-x\right)\), đúng

Do đó ta được : \(x^yy^x=y^z.z^y\)

Chứng minh tương tự ta có : \(y^zz^y=z^x.x^z\)

=> Điều phải chứng minh

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

Đặt \((\sin ^2x,\cos ^2x)=(a,b)\). Bài toán trở thành:

Tìm min, max (nếu có) của hàm số $y=a^5+b^5$ biết $a+b=1$ và $a,b\in [0;1]$

---------------------------------

Áp dụng BĐT Cô-si:

\(a^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq 5\sqrt[5]{a^5.\frac{1}{2^{20}}}=\frac{5a}{16}\)

\(b^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq \frac{5b}{16}\)

Cộng theo vế:

\(\Rightarrow a^5+b^5+\frac{8}{2^5}\geq \frac{5(a+b)}{16}=\frac{5}{16}\)

\(\Rightarrow a^5+b^5\geq \frac{1}{16}\)

Vậy $y_{\min}=\frac{1}{16}$ khi $a=b=\frac{1}{2}$ hay $\sin x=\cos x=\frac{1}{\sqrt{2}}$

Lại có:

Vì $a,b\in [0;1]$ nên $a^5\leq a; b^5\leq b$

\(\Rightarrow y=a^5+b^5\leq a+b=1\)

Vậy $y_{\max}=1$ khi $(a,b)=(0,1)$ và hoán vị hay $(\sin x, \cos x)=(0,\pm 1)$ và hoán vị.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số