K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Có x^2020 lớn hơn hoặc bằng 0 với mọi x

x^2020+x^2021+2019 lớn hơn hoặc bằng 2019 với mọi x

=> x^2020+x^2021+2019>0 với mọi x

=>G(x) vô nghiệm

DD
3 tháng 8 2021

Bạn kiểm tra đề có vấn đề gì không nhé. 

Vì ta có đa thức \(P\left(x\right)\)có hệ số nguyên thì \(\left[P\left(a\right)-P\left(b\right)\right]⋮\left(a-b\right)\).

Ta có: \(2021=1.2021=43.47\)

\(20-11=9\Rightarrow P\left(20\right)-P\left(11\right)⋮9\)

Do là đa thức có hệ số nguyên nên \(P\left(20\right),P\left(11\right)\)đều là số nguyên. 

Ta thử các trường hợp của \(P\left(20\right)\)và \(P\left(11\right)\) đều không có trường hợp nào thỏa mãn \(P\left(20\right)-P\left(11\right)⋮9\).

3 tháng 8 2021

đây là câu hỏi nâng cao chứ chắc ko sai đây ạ

mình đang cần làm cái cmr ý ạ

\(P\left(x\right)=x^3-x+5=0\)

\(x^3-x=-5\)

\(x.\left(x^2-1\right)=-5\)

Lập bảng ( vì đề nhủ c/m nghiệm nguyên)

Loại cả 4 cái

vậy...

21 tháng 3 2020

Ta có : P( x ) = x3 - x + 5 

                     = x ( x2 - 1 ) + 5

                     = x ( x - 1 ) ( x + 1 ) + 5 

Gọi P( x ) có nghiệm nguyên là : x = a 

\( \implies\)P( a ) = a ( a - 1 ) ( a + 1 ) + 5 = 0

\( \implies\)  a ( a - 1 ) ( a + 1 ) = - 5

Vì a là số nguyên \( \implies\)  a ; ( a - 1 ) ; ( a + 1 ) là ba số nguyên liên tiếp . Do đó chúng chia hết cho 2 

Mà - 5 không chia hết cho 2

\( \implies\)  a ( a - 1 ) ( a + 1 ) không thể bằng - 5 

\( \implies\) Không có giá trị a nguyên nào thỏa mãn P( a ) = 0

Vậy đa thức P( x ) =  x3 - x + 5 không có nghiệm nguyên ( đpcm )

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Lời giải:
Giả sử $P(x)$ có nghiệm $a$ nguyên. Khi đó:

$a^3-3a+5=0$

$\Leftrightarrow a(a^2-3)=-5$

Khi đó ta xét các TH sau:

TH1: $a=1; a^2-3=-5$

$\Leftrightarrow a=1$ và $a^2=2$ (vô lý)

TH2: $a=-1; a^2-3=5$

$\Leftrightarrow a=-1; a^2=8$ (vô lý)

TH3: $a=5; a^2-3=-1$

$\Leftrightarrow a=5$ và $a^2=2$ (vô lý)

TH4: $a=-5; a^2-3=1$

$\Leftrightarrow a=-5$ và $a^2=4$ (vô lý)

Vậy điều giả sử là sai, tức $P(x)$ không có nghiệm nguyên.

16 tháng 6 2020

F(x) = 1 + x2 + x4 + x6 + ... + x2018 + x2020

Ta có : \(x^2\ge0\forall x\)

            \(x^4\ge0\forall x\)

            \(x^6\ge0\forall x\)

...

            \(x^{2020}\ge0\forall x\)

\(1>0\)

=> F(x) = \(1+x^2+x^4+x^6+...+x^{2018}+x^{2020}\ge1>0\)

=> F(x) vô nghiệm ( đpcm )

Dễ mà cậu. Đặt \(P\left(x\right)=x^2+2020=0\)

\(\Rightarrow x^2=0-2020=-2020\). Mà \(x^2\ge0\forall x\)

\(\Rightarrow x^2\ne2020\Leftrightarrow P\left(x\right)\) vô nghiệm

Đặt \(x^2+2020=0\)

\(\Leftrightarrow x^2=-2020\left(voli\right)\)

Vì \(x^2\ge0\forall x\in R;-2020< 0\)

Nên pt vô nghiệm 

Vậy đa thức ko có nghiệm 

26 tháng 4 2020

x^2 - 4x + 2020

= x^2 - 4x  + 4 +2016

= (x-2)^2 +2016 > 0 với mọi x

=> vô nghiệm

Vậy ..........