Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3
Với k N*.
- Nếu n = 4k thi n là hợp số.
- Nếu n = 4k + 2 thi n là hợp số.
Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.
1,
chúng ta đều biết số nguyên tố là số không chia hết cho bât kỳ số nào trừ 1 và chính số đó.
từ đó ta có công thức tạo số nguyên tố như sau: tích tất cả các số nguyên tố đã biết cộng một (1) thì sẽ cho ta một số nguyên tố mới.
và nếu ta lặp lại thuật toán trên vô số lần ( với mỗi lần ta thêm số nguyên tố mới vào) ta sẽ có vô số số nguyên tố
Chứng minh bằng phản chứng : Giả sử có hữu hạn số nguyên tố, do đó ta có thể sắp xết các số này thành dãy : \(p_1< p_2< p_3< ...< p_n\)
Xét số \(p=p_1.p_2.p_3...p_n+1\) . Vì \(p>p_n\) nên p không thể là số nguyên tố. Vậy p là bội số của một số nguyên tố \(p_k\) nào đó, suy ra : \(1=p-p_1.p_2...p_k\Rightarrow1⋮p_k\Rightarrow p_k\le1\) (vô lý)
Vậy có vô hạn số nguyên tố.
Cái này chỉ là xem xét các trường hợp có thể của p thôi
Ta có nhận xét:Với p là số tự nhiên thì p chỉ có thể có dạng p=4k;4k+1;4k+2;4k+3
Mà vì p là số nguyên tố lớn hơn 3 nên p không là số chẵn,ta loại 2 dạng p=4k và 4k+2
Vậy p chỉ viết được dưới dạng 4k+1 và 4k+3
Số nguyên tố chia 4 sẽ dư 1 hoặc 3. Ta đã chứng minh được có vô số số nguyên tố. Mà số nguyên tố cũng ko thể tồn tại tất cả ở dạng 4k+3 được. Do đó cũng có vô số số nguyên tố tồng tại ở dạng 4k+1
Chắc ko?