K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

b) Áp dụng bđt bunhiacopski, ta có:

(xy + xz + yz)2 \(\le\)(x2 + y2 + z2)(x2 + y2 + z2)

hay : (x2 + y2 + z2\(\ge\)42 = 16

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)

CMBĐT đúng: tự cm (áp dụng bđt bunhiacopsky để cm)

Khi đó: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}=\frac{16}{3}\)

21 tháng 7 2020

b, Theo bất đẳng thức Svacxo và bất đẳng thức \(x^2+y^2+z^2\ge xy+yz+zx\)ta có :

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left(xy+yz+zx\right)^2}{3}=VP\left(đpcm\right)\)

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

1 tháng 10 2019

a/ x -3x+2

= x\(^2\) - 2x -x + 2 = x( x - 2 ) - ( x - 2 ) = ( x - 1 ) ( x - 2 )

b/x2+x-6

= x\(^2\) + 3x - 2x - 6 = x ( x + 3 ) - 2 ( x + 3 ) = ( x - 2 ) ( x + 3 )

c/x2+5x+6

= x\(^2\) + 3x + 2x + 6 = x( x + 3 ) + 2 ( x + 3 ) = ( x +2 )( x +3 )

d/x2-4x+3

= x\(^2\) - 3x - x + 3 = x( x - 3 ) - ( x - 3 ) = ( x- 1 ) ( x- 3 )

e/2x2-5x+3

= 2x\(^2\) - 2x - 3x + 3 = 2x ( x - 1 ) - 3 ( x - 1 ) = ( 2x - 3 ) ( x - 1 )

29 tháng 3 2018

1)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{b+a}=0\)

\(\Leftrightarrow a\cdot\left(\dfrac{a}{b+c}+1\right)+b\cdot\left(\dfrac{b}{a+c}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-a-b-c=0\)

\(\Leftrightarrow a\cdot\dfrac{a+b+c}{b+c}+b\cdot\dfrac{a+b+c}{a+c}+c\cdot\dfrac{a+b+c}{a+b}-a-b-c=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(loai\right)\\\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\left(đpcm\right)\)

p/s:đề thiếu và dư đk

29 tháng 3 2018

Ai biết giải thì giúp mình mấy bài toán này với, mình xin cảm ơn rất nhiều

17 tháng 8 2016

\(1,x+y+z=0=>x=-\left(y+z\right)\)

\(=>x^2=\left(y+z\right)^2=y^2+2yz+z^2\)

\(=>x^2-y^2-z^2=2yz\)

\(=>\left(x^2-y^2-z^2\right)^2=\left(2yz\right)^2=4y^2z^2\)

\(=>x^4+y^4+z^4-2x^2y^2-2x^2z^2+2y^2z^2=4y^2z^2\)

\(=>x^4+y^4+z^4=4y^2z^2-2y^2z^2+2x^2z^2+2x^2y^2=2x^2y^2+2y^2z^2+2x^2z^2\)

\(=>2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\left(đpcm\right)\)

\(2,A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2\right)^3-\left(y^2\right)^3\right]-3\left(x^4+y^4\right)\)

\(=2\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)

\(=2\left(x^4+x^2y^2+y^4\right)-3\left(x^4+y^4\right)\)

\(=2x^4+2x^2y^2+2y^4-3x^4-3y^4=-x^4+2x^2y^2-y^4\)

\(=-\left(x^4-2x^2y^2+z^4\right)=-\left[\left(x^2-y^2\right)^2\right]=-1\) (do x2-y2=1)

 

17 tháng 8 2016

\(3,\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)+15=\left(x^2-9\right)\left(x^2-1\right)+15\left(1\right)\)

Đặt \(x^2-5=t\),khi đó (1) trở thành :

\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(=\left(x^2-6\right)\left(x^2-4\right)=\left(x^2-6\right)\left(x-2\right)\left(x+2\right)\)

\(4,a,20^n-1=20^n-1^n=\left(20-1\right)\left(20^{n-1}+20^{n-1}+...+1^{n-1}\right)\)

chia hết cho (20-1)=19

=>20n-1 là hợp số vì có nhiều hơn 2 ước

b) đang kẹt,vấn đề nằm ở đề

30 tháng 4 2017

\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\\ =\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(\left(x^2\right)^2-2x^2+1\right)+4}\\ =\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\)

do: \(+\left(x+1\right)^2\ge0\Rightarrow3.\left(x+1\right)^2+9\ge9\Rightarrow\sqrt{3\left(x+1\right)^2+9}\ge\sqrt{9}=3\)(1)\(+\left(x^2-1\right)^2\ge0\Rightarrow5\left(x^2-1\right)^2+4\ge4\Rightarrow\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{4}=2\)(2)

từ (1) và(2)\(\Rightarrow\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)

câu b bạn làm tương tự

18 tháng 1 2019

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)(1)

Ta có: \(x^2+y^2=\left(x+y\right)^2-2xy\)

Vì \(x^2+y^2\)và x+y là các số nguyên => 2xy là số nguyên

\(x^4+y^4=\left(x^2+y^2\right)-2x^2y^2\)

Vì \(x^4+y^4,x^2+y^2\)là các số nguyên => \(2x^2y^2\)là số nguyên

=> \(\frac{1}{2}\left(2xy\right)^2\)là số nguyên=> \(\left(2xy\right)^2⋮2\)mà 2 là số nguyên tố => 2xy chia hết cho 2=> xy là số nguyên (2) 

Từ (1), (2) và x+y là số nguyên 

=> x^3+y^3 cũng là số nguyên.

18 tháng 1 2019

Cô: x^4+y^4=(x^2+y^2)^2-2xxyy nhé cô :)