Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11111111-2222=11110000+1111-1111.2=1111.10000+1111-1111.2
=1111.(10000+1-2)=1111.9999=1111.1111.9=1111.1111.3.3=1111.3.1111.3
=3333.3333
=>11111111-2222=3333.3333
=>ĐPCM
a) Ta có :
\(\overline{ab}=3ab\)
\(\Leftrightarrow\)\(10a+b=3ab\)
\(\Leftrightarrow\)\(b=3ab-10a=a.\left(3b-10\right)\)
Ta thấy \(b=a.\left(3b-10\right)\)\(\Rightarrow\)\(b⋮a\)
b) Ta có :
\(10a+b=3ab\)
\(\Leftrightarrow\)\(10a+ak=3ka^2\)
\(\Leftrightarrow\)\(a.\left(10+k\right)=3ka^2\)
\(\Leftrightarrow\)\(10+k=3ak\)
\(\Leftrightarrow\)\(10=3ak-k\)
\(\Leftrightarrow\)\(10=k.\left(3a-1\right)\)
Vì \(10=k.\left(3a-1\right)\)nên \(k\inƯ\left(10\right)\)
\(\frac{4212}{14640}=\frac{4212:2}{14640:2}=\frac{2106}{7320}\)
\(\frac{6318}{21960}=\frac{6318:3}{21960:3}=\frac{2106}{7320}\)
Vậy\(\frac{2106}{7320}=\frac{4212}{14640}=\frac{6318}{21960}\)
a) \(\frac{1717}{2929}=\frac{17.101}{29.101}=\frac{17}{29}\)
\(\frac{171717}{292929}=\frac{17.10101}{29.10101}=\frac{17}{29}\)
=> \(\frac{1717}{2929}=\frac{171717}{292929}\left(=\frac{17}{29}\right)\)
b) \(\frac{6420-68}{8340-82}=\frac{2\left(3210-34\right)}{2\left(4170-41\right)}=\frac{3210-34}{4170-41}\)
Vậy; \(\frac{3210-34}{4170-41}=\frac{6420-68}{8340-82}\)
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
\(\frac{171717}{292929}=\frac{17\times10101}{29\times10101}=\frac{17}{29}\)\(\frac{1717}{2929}=\frac{17\times101}{29\times101}=\frac{17}{29}\) suy ra \(\frac{1717}{2929}=\frac{171717}{292929}\)