K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

Đặt B = 2017 => B + 1 = 2018

Khi B bằng: 

\(B=\sqrt{1+B^2+\frac{B}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{\left(B+1\right)^2+B^2\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{B^2\left(B+1\right)^2+2B\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{\left[B\left(B+1\right)+1\right]^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\frac{B^2+B+1}{B+1}+\frac{B}{B+1}\left(\text{vi}:a>0\right)\)

\(B=\frac{B^2+2B+1}{B+1}\)

\(B=\frac{\left(B+1\right)^2}{B+1}\)

\(B=B+1\left(\text{vi}:a>0\Rightarrow B+1>0\right)\)

\(B=2017+1\left(\text{vi}:B=2017\right)\)

\(\Rightarrow B=2018\)

7 tháng 3 2018

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Từ đây ta có

\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)

8 tháng 3 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(\Leftrightarrow\sqrt{n}\left(\frac{1}{n}-\frac{1}{n1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\). Mà:

\(\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) 

 Từ đó, ta có:

\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)  (ĐPCM)

18 tháng 2 2018

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

17 tháng 2 2018

Tử và mẫu giống nhau mà

26 tháng 12 2018

300m2

9 tháng 3 2019

ta có x^2+y^2-6x+18+6y=0

(x-3)^2+(y+3)^2=0

x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq

3 tháng 12 2017

Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)

Vậy A<B

13 tháng 7 2017

A=24783,14746B=49566,29188

Vậy A<B

14 tháng 7 2017

Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)

Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)

\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)

Vậy A<B

4 tháng 6 2019

\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)

\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên

4 tháng 6 2019

\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)

\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)

\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)

\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)

Vậy B có giá trị là 1 số tự nhiên.

7 tháng 2 2020

Ta có: \(B=\frac{1}{16}+\frac{2}{16^2}+\frac{3}{16^3}+...+\frac{2018}{16^{2018}}\)

\(\Rightarrow16B=1+\frac{2}{16}+\frac{3}{16^2}+....+\frac{2018}{16^{2017}}\)

\(\Rightarrow16B-B=15B=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}-\frac{2018}{16^{2018}}\)

Mà: \(A=1+\frac{1}{16}+\frac{1}{16^2}+\frac{1}{16^3}+...+\frac{1}{16^{2017}}\)

\(\Rightarrow16A=16+1+\frac{1}{16}+\frac{1}{16^2}+...+\frac{1}{16^{2016}}\)

\(\Rightarrow16A-A=16-\frac{1}{16^{2017}}\)

\(\Rightarrow A=\frac{16-\frac{1}{16^{2017}}}{15}\)

\(\Rightarrow15B=\frac{16-\frac{1}{16^{2017}}}{15}-\frac{2018}{16^{2018}}\)

\(\Rightarrow15B< \frac{16}{15}\)

\(\Rightarrow B< \frac{16}{15^2}< 1\)

\(\Rightarrow B^{2017}>B^{2018}\)

7 tháng 2 2020

Cảm ơn bạn nhiều :D