Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+....+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}\)
\(A=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow A< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(\Rightarrow A< \frac{1}{5}\cdot5+\frac{1}{10}\cdot5+\frac{1}{15}\cdot5\)
\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow A< \frac{11}{6}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)
bạn ơi đề sai ở chỗ dấu " , " phải không?? bạn hãy sửa đề đi
Bạn Nguyễn Thị Bích Phương ơi, mình sửa lại đề rồi đó. Bạn giải giúp mình với.
Ta có :
1/6 < 1/5 , 1/7 < 1/5 , ... 1/19 < 1/5
=> 1/6 + 1/7 + ...+ 1/19 < 1/5 + 1/5 + ...+ 1/5
=> 1/6 + 1/7 + ...+ 1/19 < 1/5 . 14
=> 1/6 + 1/7 + ...+ 1/19 < 14/5 = 2 , 8
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{20}\)
\(=\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\frac{1}{12}+\left(\frac{1}{13}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{20}\right)\)
\(>\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\frac{1}{12}+\left(\frac{1}{16}+...+\frac{1}{16}\right)+\left(\frac{1}{24}+...+\frac{1}{24}\right)\)
\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}+\frac{1}{4}+\frac{1}{6}=1+\frac{1}{12}\)
\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{19}\)
\(=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+...+\frac{1}{19}\right)\)
\(< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(=\frac{5}{5}+\frac{5}{10}+\frac{5}{15}=1+\frac{5}{6}\)
Ta có :
\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)
\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)
\(\Rightarrow S< \frac{1}{17}.48\)
\(\Rightarrow S< \frac{48}{17}\)
\(\Rightarrow S< 2\)( 1 )
Lại có :
\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)
\(\Rightarrow S>\frac{1}{64}.48\)
\(\Rightarrow S>\frac{3}{4}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)
Vậy \(1< S< 2\left(ĐPCM\right)\)
B = 1 6 + 1 7 + ... + 1 18 + 1 19 = 1 6 + ... + 1 9 + 1 10 + ... + 1 19 < 1 4 + ... + 1 4 ⏟ 4 s + 1 10 + ... + 1 10 ⏟ 10 s = 1 + 1 = 2