Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
bạn chép lại đề nha
=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a
=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a
= -a^2b-abc-b^2a
= -ab(a+b+c)=-ab 0 =0
vậy đa thức này bằng 0
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(a^3+b^3+a^2c+b^2c\)
\(=a^2\left(a+c\right)+b^2\left(b+c\right)\)
\(=-ba^2-ab^2\)
\(=-ab\left(a+b\right)\)
\(=-ab\cdot\left(-c\right)\)
\(=abc\) (đpcm)
Ta có a + b + c + d = 0
\(\Leftrightarrow\)a+c = -( b+ d)
\(\Leftrightarrow\)(a+c)3 = - ( b+d)3
\(\Leftrightarrow\)a3 + c3 + 3ac.(a+c) = - [ b3 + d3 + 3bd( b+d) ]
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd(b+d) - 3ac(a+c)
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd( b+d) + 3ac( b+d)
\(\Leftrightarrow\)a3 + b3 + c3 + d3 = 3( ac - bd)(b +d) (đpcm)
\(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\)
\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{\sqrt{3}}\)
mà đây là toán 8 mà bn
Ta có: a+b+c=0
=> a+b=-c
=> \(a^3+b^3=\left(-c\right)^3\)
=>\(a^3+a^2b+ab^2+b^3=-c^3\)
=>\(a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)=> \(a^3+b^3+c^3-3abc=0\left(đpcm\right)\)