K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

mà đây là toán 8 mà bn

1 tháng 11 2017

Ta có: a+b+c=0

=> a+b=-c

=> \(a^3+b^3=\left(-c\right)^3\)

=>\(a^3+a^2b+ab^2+b^3=-c^3\)

=>\(a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)=> \(a^3+b^3+c^3-3abc=0\left(đpcm\right)\)

14 tháng 7 2018

ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)

\(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm

\(\Rightarrow\) sai

7 tháng 5 2015

 

bạn chép lại đề nha

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0

 

14 tháng 10 2017

dfgdfg

30 tháng 6 2018

Bài 2:

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

Lại áp dụng tương tự ta có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

30 tháng 6 2018

Bài 1:

Áp dụng BĐT Cô -si, ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng vế theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

p/s: không chắc lắm, có gì sai xót xin giúp đỡ

5 tháng 8 2019

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(a^3+b^3+a^2c+b^2c\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)\)

\(=-ba^2-ab^2\)

\(=-ab\left(a+b\right)\)

\(=-ab\cdot\left(-c\right)\)

\(=abc\) (đpcm)

15 tháng 8 2015

   Ta có   a + b + c + d = 0

\(\Leftrightarrow\)a+c = -( b+ d)

\(\Leftrightarrow\)(a+c)3 = - ( b+d)3 

\(\Leftrightarrow\)a3 + c3 + 3ac.(a+c) = - [ b3 + d3 + 3bd( b+d) ]

\(\Leftrightarrow\)a3 + b3 + c3 + d= -3bd(b+d) - 3ac(a+c)

\(\Leftrightarrow\)a3 + b3 + c3 + d3 = -3bd( b+d) + 3ac( b+d)   

\(\Leftrightarrow\)a3 + b3 + c3 + d3 = 3( ac - bd)(b +d) (đpcm)

 

 

 

10 tháng 6 2017

Ta có:     a + b + c +d = 0 => a + b + (c+d) = 0

=> a3 + b3 +(c+d)3 = 3ab(c+d)

=>a3 +b3 +c3 +d3 +3cd(c+d) = 3ab(c+d)

=> a3 +b3 +c3 +d3  = 3ab(c+d) – 3cd(c+d) = 3(c+d)(ab – cd).

25 tháng 4 2018

Tớ chưa học bđt Cauchy-Schwwarz và hệ quả AM-GM thì sao?

10 tháng 5 2018

\(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\)

\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{\sqrt{3}}\)