K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

\(VT=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)

\(VT=a^2c^2+b^2d^2+a^2b^2+c^2d^2\)

\(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=VP\)

5 tháng 6 2016

Soory em mới học lớp 7

a) \(4a^2b^2-c^2d^2\)

\(=\left(2ab\right)^2-\left(cd\right)^2\)

\(=\left(2ab-cd\right)\left(2ab+cd\right)\)

b) \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(\left(a^2+2a\right)+3\right)\left(\left(a^2+2a\right)-3\right)\)

\(=\left(a^2+2a\right)^2-3^2\)

\(=\left(a^4+2a^2\right)-9\)

Ủng hộ nha 

Thanks

4 tháng 8 2015

  a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)

22 tháng 7 2019

#)Giải :

b) Ta có :

\(\left[\left(a+b\right)+\left(c+d\right)\right]^2=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)

Áp dụng hằng đẳng thức tương tự với ba đa thức còn lại, ta được :

\(2\left(a+b\right)^2+2\left(a-b\right)^2+2\left(c+d\right)^2+2\left(c-d\right)^2\)

\(=2\left(a^2+2ab+b^2+a^2-2ab+b^2+c^2+2cd+d^2+c^2-2cd+d^2\right)\)

\(=4\left(a^2+b^2+c^2+d^2\right)\)

\(\Rightarrowđpcm\)

3 tháng 9 2018

Bài 1:

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac+a^2+ab+ac+a^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+3bc\right)\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Bài 2:

Từ câu 1b ta đã chứng minh được:

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Thay a + b + c = 0 vào ta được

\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

5 tháng 9 2018

Cảm ơn b nhìu

9 tháng 6 2017

đẳng thức, mà không có dấu bằng???????????

7 tháng 6 2016

a)\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=2ab+2ab=4ab\)

b)\(\left(a+b\right)^3-\left(a-b\right)^3-2b^3=\left(a^3+b^3+3ab\left(a+b\right)\right)-\left(a^3-b^3-3ab\left(a-b\right)\right)-2b^3\)

\(2b^3-2b^3+3ab^2+3ab^2=6ab^2\)