Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có :
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)
Vậy \(A⋮6\)
\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có :
\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)
\(B=2.31+...+2^{96}.31\)
\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)
Vậy \(B⋮31\)
Năm mới zui zẻ ^^
Ta có: \(A+5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{993}\right)-\left(5+5^2+5^3+...+5^{992}\right)\)
\(\Rightarrow4A=5^{993}-5\)
=> 4A + 5 = 5993 = (53)331 = 125331
Vậy 4A + 5 là một lũy thừa của 125
A = 5 + 52 + 53 + ...+ 5992
5A = 52 + 53 + 54 + ... + 5993
5A - A = (52 + 53 + 54 + ... + 5993) - (5 + 52 + 53 + ...+ 5992)
4A = 5993 - 5
4A + 5 = 5993
4A + 5 = (53)331
4A + 5 =125331
Vậy 4A + 5 là một lũy thừa của 125
dê mà, thôi mik giải cho k mik vs nha
A = 5 + 5^2 + 5^3 + .......... + 5^8
5A = 5^2 + 5^3 + 5^4 + .................. + 5^9
5A - A = 5^2 + 5^3 + 5^4 + .................. + 5^9 - 5 - 5^2 - 5^3 - .......... - 5^8
4A = 5^9 - 5
Suy ra A = ( 5^9 - 5 ) : 4 = 488280 chia hết cho 30
đừng quên k nha
42.15-52.6+12020
=16.15-25.6+1
=240-150+1
=90+1
=91
HOC TỐT
A = (5+5^2)+(5^3+5^4)+....+(5^2017+5^2018)
= 5.(1+5)+5^3.(1+5)+....+5^2017.(1+5)
= 5.6+5^3.6+....+5^2017.6
= 6.(5+5^3+....+5^2017) chia hết cho 6
=> ĐPCM
k mk nha
\(A=5+5^2+5^3+5^4+...+5^{2017}+5^{2018}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2017}+5^{2018}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2017}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{2017}.6\)
\(A=6\left(5+5^3+...+5^{2017}\right)\)chia hết cho 6 (đpcm)
Chúc bạn học tốt
Phải vì 23=8 chia hết cho 8 => chia hêt cho 4
52=25 chia hết cho 25
13 chia hết cho 13
Vì chia hết cho 4 và chia hết cho 5 => chia hết cho 40
2011^2002 = 2011^2000 . 2011^2 = (2011^5)^400 . 2011^2 = (.......5)^400 . ....1 = .....5 . ......1 = ........5 2009^2000 = (2009^5)^400 = tận cùng là 9 hoặc 1 vậy A ko chia hết cho 5 B = 2 + 2^2 + 2^3 + ..... + 2^100 2B = 2^2 + 2^3 +...................+ 2^101 B = 2^101 - 2 = 2^100 . 2 -2 = (2^4)^25 . 2 - 2 = 16^25 .2 - 2 = .....6 . 2 -2 = .......2 - 2 = .......0 vậy B chia hết cho 2
1) đang nghĩ
2)
2 + 22 + 23 + ... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 299 + 2100 )
= 2.(1+2) + 23(1+2) + ... + 299(1+2)
= 2.(2 + 23 + ... + 299 ) chia hết cho 2
=> đpcm
A có 8 số hạng nên ta chia thành 4 nhóm mỗi nhóm 2 số hạng
Ta có: \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^7+5^8\right)\)
\(=30+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=30+5^2.30+....+5^6.30\)
\(=30.\left(1+5^2+....+5^6\right)⋮30\)
\(\Leftrightarrow A\in B\left(30\right)\)