Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo cách làm của bài này rồi áp vào bài bạn nhé !!!
VD : Cho các số thực ko âm x, y thay đổi và thỏa mản 3x + y = 9 tìm GTLN GTNN của biểu thức
A= x^3 -xy
Đáp án :
Ta rút được y=9-3x. Với điều kiện x, y không âm ta được 0=<x=<3.
* A=x³ -x(9-3x)=x³ + 3x² -9x.
Ta có A-27=...=(x-3)(x+3)² =<0 vì x-3=<0, (x+3)² >0.
Dấu bằng xảy ra khi và chỉ khi x=3, từ đó có GTLN của A là 27. Đạt đc khi x=3, y=0.
Lại có A+5=...=(x-1)² (x+5) >=0 với mọi x thỏa mãn 0=<x=<3.
GTNN của A là -5, đạt đc khi x=1; y=6.
Vì |x-2| \(\ge\) 0 nên A = |x-2| + 5 \(\ge\) 0+5 = 5.
Đẳng thức xảy ra <=> |x-2| = 0 <=> x-2 = 0 <=> x=2.
Vậy GTNN của A bằng 5 khi x = 2.
GTNN LÀ GÌ VẬY BẠN
MK KHÔNG HIỂU HÃY GIẢI THÍCH CHO MK HIỂU NHA
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
Bạn ơi
Đề bài sai thì phải
'-'
Sai đề nhé