K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2015

a)  a chia hết cho b ; b khác 1  . gọi thương là c thì c < a . 

a - 1 < a nên các số từ a : b đến a đều nhỏ hơn a  nên các số đó đều không chia hết cho a

Vậy,...

b) Nếu a; b đều là số nguyên tố khác 2 => a; b lẻ => a + b chẵn => c chẵn ; không là số nguyên tố (trái với đề bài) 

Vậy...

c) Đề sai: Vì dụ   2 + 2 = 4

11 tháng 1 2016

a)đúng

b)sai

c)sai

d)đúng nhưng vẫn có thể là số nguyên dương hoặc số 0

e)đúng nhưng vẫn có thể là số nguyên âm hoặc số 0

g)sai

h)đúng nhưng có thể là số nguyên dương

i)đúng

k)đúng

l)đúng

m)sai

n)sai

11 tháng 1 2016

Nhiều quá à

1) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước :16;1156;111556;11115556;..... Hãy chứng minh mọi số hạng của dãy đều là số chính phương.2) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 1991 thì được số dư là 23 còn khi chia nó cho 1993 thì được số dư là 323) Tìm số nguyên x sao cho: ( x+2).(- x +3)lớn hơn...
Đọc tiếp

1) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước :

16;1156;111556;11115556;..... Hãy chứng minh mọi số hạng của dãy đều là số chính phương.

2) Tìm số tự nhiên nhỏ nhất biết rằng khi chia số này cho 1991 thì được số dư là 23 còn khi chia nó cho 1993 thì được số dư là 32

3) Tìm số nguyên x sao cho: ( x+2).(- x +3)lớn hơn hoặc bằng 0

4) Tìm số nguyên n để phần số n-1/2n+5 là số nguyên dương.

5) CMR với mọi số tự nhiên n thì:

4n - 1 chia hết cho 3

6) Tìm 2 số nguyên tố a và b để ab+1 cũng là số nguyên tố

7) Cho 50 số tự nhiên khác 0 mỗi số đều nhỏ hơn hoặc bằng 50, tổng của 50 số đó bằng 100. Chứng minh rằng có thể chọn được một vài số mà tổng của chúng bằng 50.

8) Cho 2 số tự nhiên a và b. Chứng minh rằng nếu a và b là hai số chia hết cho 3 thì:

a2+b2- 19ab chia hết cho 9 và ngược lại nếu a^2+b^2-19ab chia hết cho 9 thì a và b đều chia hết cho 3.

    GIẢI NHANH HỘ MÌNH!!!!!!

 

2
24 tháng 1 2017

cung choi bang bang ak

24 tháng 1 2017

MAU LÊN

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!

30 tháng 5 2016

1. 

Vì p là số nguyên tố lớn hơn 3 nên p lẻ. Do đó, p = 2k + 1 (k nguyên và k > 1) suy ra:

A = (p – 1).(p + 1) = 2k(2k + 2) = 4k(k + 1) suy ra A chia hết cho 8.

Ta có: p = 3h + 1 hoặc 3h – 1 (h nguyên và h > 1) suy ra A chia hết cho 3.

Vậy A = (p – 1)(p + 1) chia hết cho 24

 

30 tháng 5 2016

Bạn ơi giải thích giúp mik tại sao 4k(k+1) lại chia hết cho 8.Mình thấy thử lại luôn luôn đúng nhưng chưa biết giải thích sao à!!!Giúp mik zới mik tick cho nha Ly..........

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

1.

$a\vdots b, b\vdots a$ và $a,b\neq 0$ nên $|a|\geq |b|, |b|\geq |a|$

$\Rightarrow |a|=|b|$

$\Rightarrow a=\pm b$ 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

2/

Áp dụng kết quả của bài 1, ta suy ra $n+5=n+1$ hoặc $n+5=-(n+1)$
Nếu $n+5=n+1$

$\Leftrightarrow 5=1$ (vô lý) 

Nếu $n+5=-(n+1)$

$\Rightarrow 2n+6=0$

$\Rightarrow 2n=-6$

$\Rightarrow n=-3$

8 tháng 11 2015

a)đúng

b)sai

c)sai

tick nha