K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Ta có: \(3^{15}+3^{16}+3^{17}=3^{15}\left(1+3+3^2\right)=3^{15}\left(1+3+9\right)=3^{15}.13\)

Ta thấy: \(13⋮13\Rightarrow3^{15}.13⋮13\)

\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)\(\left(đpcm\right)\)

20 tháng 10 2019

Mk làm theo ý hiểu ko biết đúng hay sai nx haha

30 tháng 6 2016

\(3^{15}+3^{16}+3^{17}=3^{16}\left(1+3+9\right)=13\cdot3^{16}\)chia hết cho 13.

30 tháng 6 2016

3^15+3^16+3^17

=3^15.(1+3+9)

=3^15.13

13 chia hết cho 13 hiển nhiên 3^15.13 cũng vậy

Vậy 3^15+3^16+3^17 chia hết cho 13

Chúc chị học tốt^^

30 tháng 6 2016

315 + 316 + 317

= 315.(1 + 3 + 32)

= 315.13 chia hết cho 13

=> đpcm

Ủng hộ mk nha ♡_♡^_-

11 tháng 8 2019

\(3^{15}+3^{16}+3^{17}=3^{15}\left(1+3+9\right)=3^{15}.13⋮13\)

11 tháng 8 2019

Ta có : 315 + 316 + 317

        = 315.(1 + 3 + 32)

        = 315 . 13 \(⋮\)13

\(\Rightarrow\)315 + 316 + 317 \(⋮\)13 (đpcm)

20 tháng 9 2015

315 + 316 + 317

= 315 + 315 . 3 + 315 . 32

= 315( 1 + 3 + 32 )

= 315 . 13

=> 315 . 13 chia hết cho 13

=> 315 + 316 + 317 chia hết cho 13

20 tháng 9 2015

315 + 316+ 317=315(1+3+32)=315.13

chia hết cho 13

22 tháng 11 2016

a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)

\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)

b) 270 + 370 = (22)35 + (32)35 = 435 + 935

\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)

\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)

 

22 tháng 11 2016

t chỉ lm 2 câu đại diện, c` lại tương tự

22 tháng 9 2016

Ta có: M = 315 + 316 + 317 = 315 . (1 + 3 + 32) = 315 . 13 chia hết cho 13

Vậy M chia hết cho 13.

22 tháng 9 2016

Ta có M=\(^{3^{15}\times\left(1+3+3^2\right)}\)=\(3^{15}\times13\)

Mà 13 chia hết cho 13\(\Rightarrow3^{15}\times13\)chia hết cho 13 hay M chia hết cho 13

31 tháng 7 2017

Phải có \(n\in N\)nữa nha.

\(A=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(B=20^n-3^n⋮20-3=17\)(n là số tự nhiên bất kì)

\(C=16^n-1^n⋮16+1=17\)(n là số tự nhiên chẵn)

\(\Rightarrow A=B+C⋮17\)(1)

\(A=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(D=20^n-1^n⋮20-1=19\)(n là số tự nhiên bất kì)

\(E=16^n-3^n⋮16+3=19\)(n là số tự nhiên chẵn)

\(\Rightarrow A=D+E⋮19\)(2)

Từ (1), (2) \(\Rightarrow A⋮17;19\)

Vậy \(20^n+16^n-3^n-1⋮17;19\)

Chúc bạn học tốt.

phần a sai đề nha bạn 

b,Ta có

      \(2\equiv2\left(mod13\right)\)

\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)

\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)

\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)

\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)

Lại có:

\(3\equiv3\left(mod13\right)\)

\(\Rightarrow3^6\equiv1\left(mod13\right)\)

\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)

\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)

\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)

c, Ta có

\(17\equiv-1\left(mod18\right)\)

\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)

Lại có

\(19\equiv1\left(mod18\right)\)

\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)

\(\Rightarrow17^{19}+19^{17}⋮18\)