Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n^3+3n^2+n\)
\(=\left(2n^3+2n^2\right)+\left(n^2+n\right)\)
\(=2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
n chia 3 có thể dư 1 ; 2 hoặc không dư.
Nếu không dư, tích chắc chắn chia hết cho 3
Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3
Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3
Do đó tích trên luôn chia hết cho 2 và 3
Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6
Vậy ...
2n3+3n2+n=(2n3+2n2)+(n2+n)=2n2(n+1)+n(n+1)=n(n+1)(2n+1)n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2.n chia 3 có thể dư 1 ; 2 hoặc không dư.Nếu không dư, tích chắc chắn chia hết cho 3Với n = 3k + 1 thì 2n+1 = 2 ( 3k + 1 ) + 1 = 6k + 3 chia hết cho 3Với n = 3k + 2 thì n + 1 = 3k +2 + 1 = 3k + 3 chia hết cho 3Do đó tích trên luôn chia hết cho 2 và 3Mà ( 2 ;3 ) = 1 nên tích chia hết cho 2 . 3 = 6Vậy ...
TA CÓ :
n^3 + 3n^2 + 2n = n( n^2 + 3n + 2) = n( n+1) (n+2).
Mà n(n+1)(n+2) là một số chia hết cho 2 và 3, nên nó chia hết cho 6.
A = 2n3 + 3n2 + n = n ( 2n2 + 3n + 1)
= n ( n+1) (2n+1 )
= n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2) + n(n+1)(n-1)
Vì mỗi số hạnh là tích 3 số nguyên liên tiếp => tồn tại ít nhất 1 số là B(2) và B(3) mà (2;3)=1=> mỗi số hạng đều chia hết cho 3.2=6
=> A chia hết cho 6
=> ĐPCM
k cho mk nka
Có 2n3+3n2+n = 2n3+2n2+n2+n = 2n2(n+1)+n(n+1) = n(n+1)(2n+1)
Vì n và n+1 là 2 số nguyên liên tiếp => 1 trong 2 số là số chẵn => n(n+1) chia hết cho 2 (1)
Xét n= 3k, 3k+1, 3k+2 với k thuộc Z ta cũng đều ra chia hết cho 3 (2)
Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 6 => ĐPCM
c) n3 - 2 = (n3 - 8) + 6 = (n -2)(n2 + 2n + 4) + 6
Để n3 - 2 chia hết cho n - 2 <=> 6 chia hết cho n - 2 <=> n - 2 \(\in\) Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Tương ứng n \(\in\) {-4; -1; 0; 1; 3; 4; 5; 8}
Vậy.....
d) n3 - 3n2 - 3n - 1 = (n3 - 1) - (3n2 + 3n + 3) + 3 = (n -1).(n2 + n + 1) - 3.(n2 + n + 1) + 3 = (n - 4)(n2 + n + 1) + 3
Để n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1 thì (n - 4)(n2 + n + 1) + 3 chia hết cho n2 + n + 1
<=> 3 chia hết cho n2 + n + 1 <=> n2 + n + 1 \(\in\) Ư(3) = {-3;-1;1;3}
Mà n2 + n + 1 = (n + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi n nên n2 + n + 1 = 1 hoặc = 3
n2 + n + 1 = 1 <=> n = 0 hoặc n = -1
n2 + n + 1 = 3 <=> n2 + n - 2 = 0 <=> (n -1)(n +2) = 0 <=> n = 1 hoặc n = -2
Vậy ...
e) n4 - 2n3 + 2n2 - 2n + 1 = (n4 - 2n3 + n2) + (n2 - 2n + 1) = (n2 - n)2 + (n -1)2 = n2(n -1)2 + (n -1)2 = (n-1)2.(n2 + 1)
n4 - 1 = (n2 - 1).(n2 + 1) = (n -1)(n +1)(n2 + 1)
=> \(\frac{n^4-2n^3+2n^2-2n+1}{n^4-1}=\frac{\left(n-1\right)^2\left(n^2+1\right)}{\left(n-1\right)\left(n+1\right)\left(n^2+1\right)}=\frac{n-1}{n+1}\)( Điều kiện: n- 1 ; n + 1 khác 0 => n khác 1;-1)
Để n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1 thì \(\frac{n-1}{n+1}\) nguyên <=> n - 1 chia hết cho n + 1
<=> (n + 1) - 2 chia hết cho n +1
<=> 2 chia hết cho n + 1 <=> n + 1 \(\in\) Ư(2) = {-2;-1;1;2} <=> n \(\in\){-3; -2; 0; 1}
n = 1 Loại
Vậy n = -3 hoặc -2; 0 thì...
a) n2 + 2n - 4 = n2 + 2n - 15 + 11 = (n2 + 5n - 3n -15) + 11 = (n - 3)(n + 5) + 11
để n2 + 2n - 4 chia hết cho 11 <=> (n - 3).(n +5) chia hết cho 11 <=> n - 3 chia hết cho 11 hoặc n + 5 chia hết cho 11 ( Vì 11 là số nguyên tố)
n- 3 chia hết cho 11 <=> n = 11k + 3 ( k nguyên)
n + 5 chia hết cho 11 <=> n = 11k' - 5 ( k' nguyên)
Vậy với n = 11k + 3 hoặc n = 11k' - 5 thì.....
b) 2n3 + n2 + 7n + 1 = n2. (2n - 1) + 2n2 + 7n + 1 = n2. (2n -1) + n.(2n -1) + 8n + 1
= (n2 + n)(2n -1) + 4.(2n -1) + 5 = (n2 + n + 4)(2n -1) + 5
Để 2n3 + n2 + 7n + 1 chia hết cho 2n - 1 <=> (n2 + n + 4)(2n -1) + 5 chia hết cho 2n -1
<=> 5 chia hết cho 2n -1 <=> 2n - 1 \(\in\)Ư(5) = {-5;-1;1;5}
2n -1 = -5 => n = -2
2n -1 = -1 => n = 0
2n -1 = 1 => n = 1
2n -1 = 5 => n = 3
Vậy....
\(x^2-x-6=x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)\)
\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(x^3-19x-30=\left(x^3+8\right)-\left(19x-38\right)=\left(x+2\right)\left(x^2-2x+4\right)-19\left(x+2\right)=\left(x+2\right)\left(x^2-2x-15\right)=\left(x+2\right)\left(x^2-5x+3x-15\right)=\left(x+2\right)\left(x-5\right)\left(x+3\right)\)
\(x^4+4x^2-5=x^4+4x^2+4-9=\left(x^2+2\right)^2-9=\left(x^2+5\right)\left(x^2-1\right)=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(x^3-7x-6=0\Leftrightarrow\left(x^3+1\right)-\left(7x+7\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=-1\end{matrix}\right.\)
\(x^3-3x^2-16x+48=x^2\left(x-3\right)-16\left(x-3\right)=\left(x^2-16\right)\left(x-3\right)=\left(x-4\right)\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-4\end{matrix}\right.\)
\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)
\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)
\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)
ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3
và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6
tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy
còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé
=> chia hết cho 6
Ta có:
2n3 + 3n2 + 7n
= 2n3 + 2n2 + n2 + n + 6n
= 2n2.(n + 1) + n.(n + 1) + 6n
= (n + 1).(2n2 + n) + 6n
= (n + 1).n.(2n + 1) + 6n
Vì 6n chia hết cho 6 nên ta phải chứng minh (n + 1).n.(2n + 1) chia hết cho 6
+ Với n = 3k + 1 thì 2n + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => (n + 1).n.(2n + 1) chia hết cho 3
Như vậy, (n + 1).n.(2n + 1) chia hết cho 3 (2)
Từ (1) và (2), mà (2;3)=1 => (n + 1).n.(2n + 1) chia hết cho 6
=> (n + 1).n.(2n + 1) + 6n chia hết cho 6
=> 2n3 + 3n2 + 7n chia hết cho 6 (đpcm)