K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                       \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                         \(< 1-\frac{1}{100}< 1\)

=> đpcm

28 tháng 6 2016

giúp mình với nhé các bạn !

vào câu hỏi tương tự nha bạn! VD: mik

27 tháng 1 2016

khó quá vì em đang là hs lớp 5

29 tháng 1 2016

1/2^2+1/3^2+1/4^2+...+1/100^2

+) 1/2^2=1/2.2< 1/1.2

+) 1/3^2 = 1/3.3 < 1/2.3

+) 1/4^2 =1/4.4 < 1/3.4

+) ...

+) 1/100^2 = 1/100.100 < 1/99.100

=> 1/2^2+1/3^2+1/4^2+...+1/100^2 < 1/1.2+ 1/2.3+1/3.4+..+1/99.100 = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100 = 1-1/100 < 1

=> 1/2^2+1/3^2+1/4^2+...+1/100^2 < 1

(Hoi kho nhìn mot chút , xin loi nhe! Nhung bai giai nhu tren la dung 100% roi day!!!! Tick cho minh nhe Vy!!!!!!!!!!!!)

5 tháng 3 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

11 tháng 8 2015

  A=1+4+42+...+499

4A=4+42+43+...+4100

4A-A=3A=(4+42+...+4100)-(1+4+42+...+499)

 3A=4100-1

Ta thấy: 3A<B =>A<B/3 (điều phải chứng minh)

nhớ tích đúng nhe!!

 

11 tháng 8 2015

A=1+4+42+...+499

=>4A=4+42+43+...+4100

=>4A-A=(4+42+43+...+4100)-(1+4+42+...+499)=4100-1<4100

=>3A<4100

=>3A<B

=>A<B/3

27 tháng 4 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< 1-\frac{1}{100}< 1\)

=> Điều phải chứng minh

28 tháng 4 2017

cảm ơn lê minh anh (arigatougozaimasu)

2 tháng 5 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}<2\)

2 tháng 5 2016

Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)     (1)

Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=1+\left(1-\frac{1}{50}\right)=1+\frac{49}{50}\)

Mà 1+49/50 < 2   (2)

Từ (1) và (2) ta có: A<1+49/50<2

Vậy A<2