K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

Tổng 100 số hạng đầu tiên của dãy trên là:


\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)

=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)

=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)

=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)

=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)<\frac{1}{4}.\left(1-0\right)=\frac{1}{4}.1=\frac{1}{4}\)

=>ĐPCM

4 tháng 4 2019

làm sao để biết đc số cuối là số nào

21 tháng 2 2017

Giải:

Tổng 100 số hạng đầu tiên của dãy trên là:

\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)

\(=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)

\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{401}\right)\)

\(\frac{1}{4}\left(1-\frac{1}{401}\right)< \frac{1}{4}\left(1-0\right)\)

\(\Rightarrow\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)

Vậy tổng 100 số hạng đầu tiên của dãy đó nhỏ hơn \(\frac{1}{4}\) (Đpcm)

13 tháng 6 2015

*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)

17 tháng 3 2017

Ta thấy mẫu của dãy có dạng 1.5; 5.9; 9.13; 13.17; 17.21;... tổng quát là (4n-3)(4n+1). Mẫu thứ 100 bằng 397.401. Tổng của 100 số hạng đầu của dãy bằng:

\(\left(1-\dfrac{1}{401}\right):4=\dfrac{1}{4}-\dfrac{1}{1604}< \dfrac{1}{4}\)

28 tháng 2 2016

Tổng 100 số hang đầu tiên của dãy là:

1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197

= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401

=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)

=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)

=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4

==> ĐPCM

28 tháng 2 2016

Tổng 100 số hang đầu tiên của dãy là:

1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197

= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401

=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)

=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)

=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4

==> ĐPCM

nhớ k cho mình nha