Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)
TH2: \(m>-1\):
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)
\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương
\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)
Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)
Vậy pt luôn có ít nhất 2 nghiệm với mọi m
\(\lim\limits_{x\rightarrow-3}\frac{\sqrt{2x+10}-\sqrt[3]{x+11}}{x^3+27}=\lim\limits_{x\rightarrow-3}\frac{\sqrt{2x+10}-2+2-\sqrt[3]{x+11}}{x^3+27}=\lim\limits_{x\rightarrow-3}\frac{\frac{2\left(x+3\right)}{\sqrt{2x+10}+2}+\frac{-3-x}{4+2\sqrt[3]{x+11}+\sqrt[3]{\left(x+11\right)^2}}}{\left(x+3\right)\left(x^2-3x+9\right)}\)
=> \(\lim\limits_{x\rightarrow-3}S=\lim\limits_{x\rightarrow-3}\frac{\frac{2}{\sqrt{2x+10}+2}-\frac{1}{4+2\sqrt[3]{x+11}+\sqrt[3]{\left(x+11\right)^2}}}{x^2-3x+9}=\frac{5}{324}\)
Đặt \(f\left(x\right)=\left(m^2+1\right)x^5-2m^2x^3-4x+m^2+1\) liên tục trên R
=> f(x) liên tục trên \(\left[-2;0\right];\left[0;1\right];\left[1;2\right]\)
Ta có : \(f\left(-2\right)=-15m^2-23< 0;f\left(0\right)=m^2+1>0;f\left(1\right)=-2< 0\)
\(f\left(2\right)=17m^2+25>0\) .
Suy ra : \(f\left(-2\right).f\left(0\right)< 0;f\left(0\right).f\left(1\right)< 0;f\left(1\right).f\left(2\right)< 0\)
Chứng tỏ : p/t đã cho luôn có ít nhất 1 no \(\in\left(-2;0\right)\) ; 1 no \(\in\left(0;1\right)\) ; 1 no \(\in\left(1;2\right)\)
=> P/t luôn có ít nhất 3 no thực \(\forall m\left(đpcm\right)\)
Đặt \(f\left(x\right)=x^4-\left(3m-2\right)x^3+mx-1\)
Hiển nhiên \(f\left(x\right)\) liên tục và xác định trên R
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^4-\left(3m-2\right)x^3+mx+1\right)=+\infty\) dương
\(\Rightarrow\) Luôn tồn tại 1 số thực \(a>0\) đủ lớn sao cho \(f\left(a\right)>0\)
\(\Rightarrow f\left(0\right).f\left(a\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;a\right)\) hay \(\left(0;+\infty\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(x^4-\left(3m-2\right)x^3+mx-1\right)=+\infty\) dương
\(\Rightarrow\) Luôn tồn tại 1 số thực \(b< 0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(0\right),f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
Vậy phương trình luôn có ít nhất 2 nghiệm với mọi m