K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2021

Đề bài sai

Đề đúng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

15 tháng 5 2017

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

15 tháng 5 2017

từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.

áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).

nên a2/a4 + bc <=1/2v(bc).

do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).

ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.

thật vậy.

giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).

áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.

ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.

nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)

lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.

hay VP <= 1 (2).

từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay

(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3

tức N <= 3 (đpcm).

(mình chưa biết đánh nên cố đọc nhé!)

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

24 tháng 5 2016

bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh

1 tháng 1 2019

Đặt \(ab=x\)\(bc=y\);\(ac=z\)

\(BPT< =>\left(x+y+z\right)^2\ge3\left(xz+xy+yz\right)\)

\(< =>x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\)

\(< =>x^2+y^2+z^2-xy-xz-yz\ge0\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(LĐ\right)\)

29 tháng 1 2019

Thay ab+bc+ca=1 vào vế trái rồi ghép lại được vế phải

29 tháng 1 2019

Ta có: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)                                                                                         \(=\left(a\left(a+b\right)+c\left(a+b\right)\right)....\)

Tướng tự bạn tự phân tích là ra kết quả

27 tháng 12 2016

bc(b2-c2)cosA+ca(c2-a2)cosB+ba(a2-b2)cosC

\(\frac{\left(b^2-c^2\right)\left(b^2+c^2-a^2\right)}{2}+\frac{\left(c^2-a^2\right)\left(c^2+a^2-b^2\right)}{2}+\frac{\left(a^2-b^2\right)\left(a^2+b^2-c^2\right)}{2}\)

Giờ nhân mấy cái đấy vô rồi rút gọn là nó bằng 0 đó

27 tháng 12 2016

chẳng hiểu gì cả