Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề phải là x2014+y2015+z2016 chứ nhỉ? Đề có sai không vậy ạ?
2016*|x-1|=2015*|x-1|+(x-1)2
2016*|x-1|-2015*|x-1|=(x-1)2
|x-1|=(x-1)2
=>|x-1|=(x-1)(x-1)=x(x-1)-(x-1)=x2-x-x+1=x2-2x+1(1)
Điều kiện: x2-2x+1>=0 -> x2-2x>=-1 => x2>=-1+2x
thì (1) trở thành:
x-1=x2-2x+1 hoặc x-1=-x2+2x-1
x+2x=x2+2 hoặc x-2x=-x2-1+1=-x2
3x=x2+2 hoặc -x=-x2
3x-x2=2 hoặc -x2+x=0
x(3-x)=2 hoặc x(-x+1)=0
TH1:ta xét bảng sau:
x | 1 | -1 | 2 | -2 |
3-x | 2 | -2 | 1 | -1 |
x | 1(thỏa mãn) | loại | 2(thỏa mãn) | loại |
TH2:=>x=0(thỏa mãn) hoặc -x+1=0
-x=-1
x=1(thỏa mãn)
Vậy x=0 hoặc x=1 hoặc x=2 thì thỏa mãn đề bài
Gọi số 22015 là số có a chữ số (a thuộc N, a khác 0)
số 52015 là số có b chữ số (b thuộc N, b khác 0)
Số bé nhất có a chữ số là 10a-1
Suy ra 10a-1 < 22015 < 10a (1)
10b-1 < 52015 <10b (2)
Cộng từng vế của (1) với (2) => 10a + b - 2 < 102015 < 10 a + b
=>a + b - 2 < 2015 < a+b
Mà a+b-2<a+b-1<a+b (3 số TN liên tiếp)
=>a+b-1=2015
=>a+b=2016
Vậy 2 số 22015 và 52015 viết trong hệ thập phân và viết liền nhau tạo thành 1 số có 2016 chữ số
Dù tui đã bít giải nhưng thanks ông nha! Do ghi trong vở ko rõ ràng => ko hỉu => ms hỏi cái
Gửi cho các bạn lớp 6 tham khảo (đây là đề của em họ mình)
Lời giải:
Ta có $3^m+5^n\equiv 3^m+1\equiv 0\pmod 4$ nên $3^m\equiv (-1)^m\equiv -1\pmod 4$ nên $m$ lẻ
Đặt $m=2k+1$ ( $k\in\mathbb{N}$) thì $3^m=3^{2k+1}\equiv 3\pmod 8$
$\Rightarrow 5^n\equiv 5\pmod 8$. Xét tính chẵn, lẻ ( đặt $n=2t,2t+1$) suy ra $n$ lẻ
Do đó $\Rightarrow 3^n+5^m\equiv (-5)^n+(-3)^m=-(5^n+3^m)\equiv 0\pmod 8$
Ta có đpcm
a)ta có S=5+52+53+...+52004 =(5+52)+(53+54)+...+(52003+52004)
S=5.(1+5)+53.(1+5)+...+52003.(1+5)
S=5.6+53.6+..+52003+6
S=6.(5+53+...+52003)
Vì 6 chia hết cho 6
=> S chia hết cho 6
b)S=5.(1+5+52)+...+598.(1+5+52)
S= 5.31+...+598.31
S=31.(5+...+598)
vì 31 chia hết cho 31
=> S chia hết cho 31
c)S=5.(1+5+52+53)+...+597.(1+5+52+53)
S=5.156+...+597.156
S= 156.(5+...+597)
vì 156 chia hết cho 156
=> S chia hết cho 156
\(S=5+5^2+5^3+...+5^{2004}\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+...+5^{2003}\right)\)
\(=6\left(5+5^3+...+5^{2003}\right)\)
Vậy S chia hết cho 6.
\(S=5\left(1+5+5^2\right)+...+5^{2002}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5+...+5^{2002}\right)\)
\(=31\left(5+...+5^{2002}\right)\)
Vậy S chia hết cho 31.
\(S=5\left(1+5+5^2+5^3\right)+...+5^{2001}\left(1+5+5^2+5^3\right)\)
\(=\left(1+5+5^2+5^3\right)\left(5+...+5^{2001}\right)\)
\(=156\left(5+...+5^{2001}\right)\)
Vậy S chia hết cho 156.
A=-1/2*-2/3*-3/4*..*-2013/2014
A=-1*-2*-3*...*-2013/2*3*4*...*2014
A=-1/2014
ta có(-1)^2015=-1
B=-1/2015>-1/2014=A
nên A<B