K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

20 tháng 2 2020

\(\frac{n+1}{2n+3}\)\(\frac{2\left(n+1\right)}{2n+3}\)\(\frac{2n+2}{2n+3}\)\(\frac{2n+3-1}{2n+3}\)=\(-\frac{1}{2n+3}\)

=> 2n+3 thuộc Ư(-1) ={ 1; -1}

Vậy...

Ko chắc nha

5 tháng 4 2017

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

6 tháng 4 2017

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

28 tháng 4 2019

cho d là UCLL của \(\frac{2n+3}{4n+8}\)

=)\(\left(4n+8\right)-\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow4n+8-4n+6⋮d\)

\(\Rightarrow2⋮d\)\(\Rightarrow2=d\)

Mà 2n+3 là số lẻ =) d=1

Vậy\(\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số TN n

28 tháng 4 2019

Gọi ước chung lớn nhất của \(2n+3\)và \(4n+8\)là d 

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)\)\(⋮\)\(d\)

\(\Rightarrow4n+8-4n-6\)\(⋮\)\(d\)

\(\Rightarrow2\)\(⋮\)\(d\)

Mà \(2n+3\)không chia hết cho 2 

\(\Rightarrow1\)\(⋮\)\(d\)

\(\Rightarrow\frac{2n+3}{4n+8}\)là phân số tối giản với mọi số tự nhiên n

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d

=> 4n+8-(4n+6) chia hết cho d

=> 4n+8-4n-6 chia hết cho d

=> 2 chia hết cho d

=> d E {1;2}

Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1

=> ƯCLN(2n+3,4n+8)=1

Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
          4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

:D

25 tháng 11 2023

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2