K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

\((x^3+x^2y+xy^2+y^3)(x-y)=[x^2(x+y)+y^2(x+y)](x-y)\)

\(=(x^2+y^2)(x+y)(x-y)\)

\(=(x^2+y^2)(x^2-xy+yx-y^2)=(x^2+y^2)(x^2-y^2)\)

\(=x^4-x^2y^2+y^2x^2-y^4=x^4-y^4\) (đpcm)

16 tháng 6 2017

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4=x^4-y^4\Rightarrowđpcm\)

16 tháng 6 2017

\(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)\)

\(=x^4-y^4=VP\) (ĐPCM)

24 tháng 7 2017

Biến đổi VT ta được :

\(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)-y^4\)

\(=x^4-y^4=VP\) (đpcm)

3 tháng 6 2017

a.

\(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)

ta có

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\)

=>ĐPCM

b.

ta có

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=>ĐPCM

9 tháng 6 2017

a, (x-1) (x2 +x+1)

= x3+x2+x-x2-x-1

= x3-1 (đfcm)

b, (x3+x2y+xy2+y3) (x-y)

=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4

= x4-y4 (đfcm)

24 tháng 6 2016

a) Ta có:

\(\left(x-1\right)\left(x^2+x+1\right)=x\left(x^2+x+1\right)-\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\) (đpcm)

b) Ta có:

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)=x^4+x^3y+x^2y^2+xy^3-x^3y+x^2y^2+xy^3+y^4=x^4+y^4\)

 

8 tháng 11 2015

câu hỏi tương tự

11 tháng 2 2020

\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)

\(\Leftrightarrow\left(x^4-2x^2y^2+y^4\right)+\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+x^3\left(x-y\right)+y^3\left(y-x\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) 

\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{2}\right]\ge0\) ( đúng )

31 tháng 7 2020

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)

\(\Rightarrow dpcm\)

b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)

\(\Rightarrow dpcm\)

c.d làm tương tự

31 tháng 7 2020

Bài làm

a) Biến đổi vế trái, ta được:

\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)

\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)

\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5-y^5=VP\left(đpcm\right)\)

b) Biến đổi vế trái, ta có:

\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)

\(=x^5+y^5=VP\left(đpcm\right)\)

c) Biến đổi vế trái, ta có: 

\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)

\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)

\(=a^4-b^4=VP\left(đpcm\right)\)

d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)

Biến đổi vế trái, ta có:

\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)

\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)

\(=a^3+b^3=VP\left(đpcm\right)\)

28 tháng 6 2017

Rút gọn phân thức

2 tháng 9 2017

Ta có : VP = \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

Vp\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) = VT

Vậy  \(x^4-y^4\) \(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) (đpcm)