Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)
\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)
\(A=5n^2+5n\)
\(A=5n\left(n+1\right)\)
\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)
\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)
\(\Rightarrow5n\left(n+1\right)⋮2\)(2)
\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)
\(\text{Vậy A⋮10}\)
Sai đề r nếu thử với x=1 thì biểu thức trên bằng -88 ko chia hết cho 59
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
Bài 2:
\(n^5-n\)
\(=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)
\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)
2 \(A=n^3+n^2+5n^2+5n-24n-24=n\left(n+1\right)+5n\left(n+1\right)-24\left(n+1\right)\)
\(=\left(n+5n+24\right)\left(n+1\right)=\left(6n+24\right)\left(n+1\right)=6\left(n+4\right)\left(n+1\right)\)
vì \(6⋮6\Rightarrow A⋮6\)
Ta có : 2005n+1 - 2005n
= 2005n ( 2005 - 1 )
= 2005n . 2004 luôn chia hết cho 2004
Vậy 2005n+1 - 2005n luôn chia hết cho 2004