K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2014

Nếu N là số lẻ thì N + 2015 chia hết cho 2 => tích đó là số chẵn

Nếu N là số chẵn thì N + 2014 chia hết cho 2 => tích đó là số chẵn

 

6 tháng 12 2014

Vì n là số tự nhiên => có 2 trường hợp

TH1: n là số lẻ 

=> n+2009 là số chẵn => tích(n+2008)(n+2009) là số chẵn

TH2: n là số chẵn

=> n+2008 là số chẵn => tích( n+2008)(n+2009) là số chẵn

Vậy Với mọi n thuộc số tự nhiên thì(n+2008)(n+2009) là số chẵn(đpcm)

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

27 tháng 2 2016

Ta có:(n+2014).(n+2015) là tích của hai số liên tiếp nên trong hai số có 1 số chẵn

Vì số chẵn nhân mấy cũng là số chẵn nên (n+2014).(n+2015) là số chẵn\(\left(đpcm\right)\)

14 tháng 12 2016

mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp

...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp

mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2

mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập

                             CHÚC MAY MẮN

5 tháng 2 2017

Tuy bài làm của bạn ko giống như bài của cô mình chữa nhưng mình cũng rất cảm ơn bạn nhé Nguyễn Lâm Văn

21 tháng 7 2015

TH1: n lẻ

=> n2 lẻ

=> n2 + n chẵn

=> n2 + n + 2 chẵn

Mà 1 lẻ

=> n2 + n + 2 + 1 lẻ

TH2: n chẵn

=> n2 chãn 

=> n2 + n chẵn

=> n2 + n + 2 chẵn 

Mà 1 lẻ

=> n2 + n + 2 + 1 le

KL: n2 + n + 2 + 1 luôn lẻ với mọi số tự nhiên n (Đpcm)

9 tháng 8 2023

Với số tự nhiên \(n\ge2\) bất kì, gọi \(N=1.2.3...n\left(n+1\right)\)

Xét các số \(N+2,N+3,...,N+n+1\), ta thấy:

\(N+2=1.2.3...n\left(n+1\right)+2⋮2\) nên \(N+2\) là hợp số.

\(N+3=1.2.3...n\left(n+1\right)+3⋮3\) nên \(N+3\) là hợp số.

...

\(N+n+1=1.2.3...n\left(n+1\right)+n+1⋮n+1\) nên \(N+n+1\) là hợp số.

 Vậy \(N+i\) là hợp số với mọi \(2\le i\le n+1\). Có tất cả \(n\) số \(N+i\), suy ra đpcm.

8 tháng 8 2023

Xét dãy các số: (�+1)!+2,(�+1)!+3,...,(�+1)!+�+1(n+1)!+2,(n+1)!+3,...,(n+1)!+n+1.

Có (�+1)!+�⋮�(n+1)!+kkmà (�+1)!+�>�(n+1)!+k>knên số đó là hợp số. 

 =>Vậy dãy số trên gồm toàn hợp số.