Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)
\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)
\(A=\overline{\left(.....0\right)}\)
Vì A có tận cùng là 0
\(\Rightarrow A⋮5\) (Đpcm)
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)
999993^1 tận cùng là 3
999993^2 ....................9
999993^3 ....................7
999993^4 ....................1
999993^5 ....................3
Vậy 999993^(m+4k) và 999993^m có chữ số tận cùng giống nhau ---> chữ số tận cùng của 999993^1999 = 999993^(3 + 4.499) là 7
Làm tương tự sẽ thấy chữ số tận cùng của 555557^1997 cũng là 7 ---> chữ số tận cùng của A là 0 ---> A chia hết cho 5
Hello bạn ^_^"
Có :
+) 9999931999 = ...31999 = ...31996 x ...33 = (...34)499 x ...33 = ...1499 x ...27 = ...1 x ...7 = ...7
+) 5555571997 = ...71996 x ...71 = (...74)499 x ...7 = ...1499 x ...7 = ...1 x ...7 = ...7
Ta có : 9999931999 - 5555571997 = ...7 - ...7 = ...0 \(⋮\)5
Vậy ta có điều phải chứng minh !!!
Okê, số có tận cùng là 3 hoặc 7 khi lũy thừa lên 4 sẽ có số tận cùng là 1.
VD :
4645396 = (...34)24 = ...124 = ...1
nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5
Tick nha
Ta có: 9999931999=(...3)499.4+3
=[(...3)4]499.(...3)3
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Ta có: 5555571997=(...7)4.499+1
=[(...7)4]499.(...7)1
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Vậy A=(...7)-(...7)=(...0)
Mà các số có CSTC là 0 thì chia hết cho 5
=>A chia hết cho 5(đpcm)
Số có tận cùng là 3 khi nâng lên lũy thừa mũ 4n (n \(\in\) N) có tận cùng là 1.
Do đó \(999993^{1999}=999993^{4.499+3}=999993^{4.499}.999993^3=\left(...1\right).\left(...7\right)=\left(...7\right)\)
Số có tận cùng là 7 khi nâng lên lũy thừa mũ 4n (n \(\in\) N) có tận cùng là 1.
Do đó \(555557^{1997}=555557^{4.499+1}=555557^{4.499}.555557^1=\left(...1\right).\left(...7\right)=\left(...7\right)\)
Vậy A = 9999931999 - 5555571997 = (...7) - (...7) = (...0) có tận cùng là 0 nên chia hết cho 5.
Cho A=\(999993^{1999}-555557^{1997}\).Ta thấy:Ta lấy từng số cuối của chúng nhân với nhau.
999993^0=1;999993^1=.............3;999993^2=..........9;999993^3=.............7.Và cuoi của chúng cứ lần lượt theo những số:1;3;9;7.Giờ ta lấy 1999:4=499 du 3
=>Chữ số tận cùng của 999993^1999=7 n
555557^0=1;555557^1=.........7;555557^2=............9;555557^3=............3.Và cuối của chúng cứ lần lượt theo những số:1;7;9;3.Giờ ta thấy 1997:4 du 1
=>Chữ số tận cùng của 555557^1997=7 m
Từ n và m ta có thể chứng minh rằng:
999993^1999-555557^1997 .Chia hết cho 5
Bài của tớ đứng đó nhưng hơi dài dòng 1 tí.Nếu bạn tìm được người giỏi hơn thì bảo hộ làm gon đi nhé
cho mình
A=9999931999-5555571997
A=9999931996.9999933-5555571996.555557
A=(9999934)499.......7-(5555574)499.555557
A=...........1499........7-..........1499.555557
A=...................1........7-..............1.555557
A=..........................7-....................7
A=....................0 chia hết cho 10(đpcm)
Ta có:
A=9999931999−5555571997A=9999931999−5555571997
A=9999931998.999993−5555571996.555557A=9999931998.999993−5555571996.555557
A=(9999932)999.999993−(5555572)998.555557A=(9999932)999.999993−(5555572)998.555557
A=(.....9)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯999.999993−(.....1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.555557A=(.....9)¯999.999993−(.....1)¯.555557
A=(.....7)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯−(.....7)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=(.....7)¯−(.....7)¯
A=(.....0)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=(.....0)¯
Vì A có tận cùng là 0
⇒A⋮5⇒A⋮5 (Đpcm)