K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 a) Vế trái: Dùng quy tắc chuyển vế

a - b -a  - b + 2a - b - 2a + 3b

= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0

Mà Vế phải = 0

Suy ra hằng đẳng thức đúng

b) Tương tự: Vế trái

a + b - c - a +b - c + b +c - a - b + a + c

= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b

Mà vế phải = 2b

Suy ra hằng đẳng thức đúng :D

4 tháng 3 2020

\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)

\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)

\(\Leftrightarrow\text{0=0}\)

\(\Rightarrow\text{ĐPCM}\)

\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)

\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)

\(-2a+4b-2c=2b\)

\(-2a+4b-2c-2b=0\)

\(-2a+2b-2c=0\)

\(đpcm\) 

3 tháng 2 2017

1) Ta có : (a-b+c)-(a+c) = -b

=> a-b+c-a-c = -b

=> (a-a)+(c-c)-b = -b

=> 0 + 0 - b = -b

=> -b = -b

Vậy (a-b+c)-(a+c) = -b

2) Ta có (a+b)-(b-a)+c = 2a+c

=> a+b-b+a+c = 2a+c

=> (a+a)+(b-b)+c = 2a+c

=> 2a+0+c = 2a+c

=> 2a+c = 2a+c

Vậy (a+b)-(b-a)+c = 2a+c

3) -(a+b-c)+(a-b-c) = -2b

=> -a-b+c+a-b-c = -2b

=> (-a+a)+[-b+(-b)]+(c-c) = -2b

=> 0+(-2b)+0 = -2b

Vậy -(a+b-c)+(a-b-c) = -2b

5 tháng 3 2020

1(a-b+c)-(a+c)                                                          2(a+b)-(b-a)+c

=a-b+c-a-c                                                                 =a+b-b+a+c

=a+(-b)+c+(-a)+(-c)                                                   =a+(b-b)+a+c

=[a+(-a)]+[c+(-c)]+(-b)                                               =a+0+a+c

=0+0+(-b)                                                                  =a+a+c

=-b                                                                             =2a+c

3) - (a+b-c)+(a-b-c)

  = -a-b+c+a-b-c

 =(-a+a)+(c-c)-b-b

 =-2b

22 tháng 2 2020

yều cầu bài là j vậy bn

23 tháng 2 2020

"Chứng minh đẳng thức" nhé bạn!

29 tháng 1 2016

Ta có :  (2a - b) - (a + b) + (a - b) - (2a - 3b)
            = 2a - b - a - b + a - b  -  2a + 3b  
            = (2a - 2a)+ (a - a) + (b - b - b + 3b) 
            =   0         +   0     +          0
            =                  0
Vậy đẳng thức (2a - b )- (a + b) + (a - b) - (2a - 3b) = 0

19 tháng 4 2020

a) ( a + b - ( b - a ) ) + c = a + b - b + a + c = ( a + a ) + ( b - b ) + 2 = 2a + 2 ( đpcm )

b) -( a + b - c ) + ( a - b - c ) = -a - b + c + a - b - c = ( -a + a ) + ( -b - b ) + ( c - c ) = -2b ( đpcm )

c) * Suy nghĩ các thứ * 

19 tháng 4 2020

a(b+c)-[a(-b-d)]=-a(bc-d)

\(VT=a\left(b+c\right)-\left[a\left(-b-d\right)\right]=ab+ac-\left[-ab-ad\right]\)\(ab+ac+ab+ad=2ab+ac+ad\)

\(VP=a\left(bc-d\right)=-abc+ad\)

2 đẳng thức này sau khi rút gọn không = nhau

=> 2 đẳng thức này k bằng nhau

23 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)