K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2015

\(x^2+2006+x\)

\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{2}+\frac{4011}{2}\)

\(=x.\left(x+\frac{1}{2}\right)+\frac{1}{2}.\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)

\(=\left(x+\frac{1}{2}\right).\left(x+\frac{1}{2}\right)+\frac{4011}{2}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}\)

\(\text{Vì }\left(x+\frac{1}{2}\right)^2\ge0\text{ nên }\left(x+\frac{1}{2}\right)^2+\frac{4011}{2}>0\)

\(\text{Hay }x^2+2006+x>0\)

\(\text{Vậy đa thức }x^2+2006+x\text{ vô nghiêm}\)

 

28 tháng 8 2015

trời ơi ! cái này thì tui biết thừa ! chỉ cần coppy về rùi bấm vào văn bản máy fx rồi tự làm trên máy cũng được !

7 tháng 5 2016

Ta có 

x^2 luôn >= 0 với mọi x  

x>=0 với mọi x 

1>0 

Nên đa thức P(x) vô nghiệm 

7 tháng 5 2016

1-4*1*1=-3 < 0

=> vô ...........

5 tháng 7 2018

Sửa đề \(2x^2-x^2+9\)

\(=x^2+9\)

Do \(x^2\ge0\)

\(\Rightarrow x^2+9\ge9\)

Vậy đa thức trên vô nghiệm

5 tháng 7 2018

\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)

Where is VT ?

11 tháng 5 2016

D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0

vậy D(x) vô nghiệm

11 tháng 5 2016

Dùng hằng thức (a-b)2=a2-2ab+b2 ta có

D(x)= X2-4x+5=x2-2x2+22+1

                     =(x-2)2+1

Vì (x-2)2>-1 suy ra (x-2)2+1>0

Vậy đa thức D(x)=x2-4x+5 không có nghiệm

12 tháng 6 2017

1) a) 9x+2x-x=0

11x-x=0

10x=0

x=0

b) 25-9x=0

9x=25

x=25/9

2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)

\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)

\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)

mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm

12 tháng 6 2017

1)

a) Ta có :

9x + 2x - x = 0

( 9 + 2 - 1 )x = 0

10x = 0

x = 0 : 10

x = 0

Vậy x = 0 là nghiệm của đa thức 9x + 2x - x

b) Ta có :

25 - 9x = 0

9x = 25

x = 25 ; 9

x = 25/9

Vậy x = 25/9 là nghiệm của đa thức 25 - 9x

2. Ta có :

Vì x2 luôn > 0 với mọi giá trị của x

x4 luôn lớn hơn 0 với mọi giá trị x

1 > 0

Vậy x2 + x4 + 1 > với mọi giá trị x

Hay da thức x2 + x4 + 1 vô nghiệm

16 tháng 4 2016

Vì x4 \(\ge\) 0 với mọi x \(\in\) R

   3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R

=>P(x) vô nghiệm

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

5 tháng 5 2018

Ta có :x2+5x+4=0

=>x2+x+4x+4=0

=>x(x+1)+4(x+1)=0

=>(x+1)(x+4)=0

=>\(\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)

=>\(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

Ta có:

\(-x^2-2018=0\)                 (1)

\(\Leftrightarrow-x^2=2018\)

\(\Leftrightarrow x^2=-2018\) (Đẳng thức này vô lý vì \(x^2>0\) \(\forall x\in R\))

nên không có giá trị nào của x thỏa mãn đẳng thức (1)

Vậy đa thức \(-x^2-2018\) vô ngiệm

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm 

8 tháng 7 2016

G (x) = x2 + 2x + 3

= x2 + x + x + 1 + 2

= x.(x + 1) + (x + 1) + 2

= (x + 1).(x + 1) + 2

= (x + 1)2 + 2 \(\ge\)2

Vậy G(x) vô nghiệm.

A (x) = x2 - x + 1

= x2 - 1/2x - 1/2x + 1/4 + 3/4

= x.(x - 1/2) - 1/2.(x - 1/2) + 3/4

= (x - 1/2).(x - 1/2) + 3/4

= (x - 1/2)2 + 3/4 \(\ge\)3/4

Vậy A(x) vô nghiệm.