K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

2x + 2x + 2016 = 2( x+ x +1 -1) + 2016 =

= 2( x+1)-2 +2016 = 2(x+1)2 + 2014

2(x+1)2 + 2014 luôn dương với mọi x

bn thấy hay k

24 tháng 6 2016

Ta có: 2x+ 2x + 2016

= 2. (x2+2x+2016)

= 2. [x2+2.x.​1/2+(1/2)2-(1/2)2+2016]

= 2. [x2+2.x.​1/2+(1/2)2+ 8063/4]

= 2. {[x+(1/2)]2 + 8063/4}

= 2. [x+(1/2)]2 + 8063/2

Mà: 2. [x+(1/2)]>= 0

=> 

=> 2. [x+(1/2)]2 + 8063/2 >= 8063/2 > 0

Vậy 2x+ 2x + 2016 luôn dương với mọi x

6 tháng 5 2017

Giả sử x là số dương

=>5x2016>0 và 2x>0

=>5x2016+2x>0

=>f(x)=5x2016+2x+7>0 với x dương

=>đa thức không có nghiệm dương(đpcm)

11 tháng 5 2016

x^2 + 2x +2016 = x^2 + x + x + 1 +2015

                       = x ( x+1 ) + 1 ( x + 1 ) +2015 

                       = ( x + 1 ) ( x +1 ) + 2015

                       = ( x + 1 )^2 + 2015 

Xét (x + 1 )^2 + 2015 = 0 

=> ( x + 1 )^2 = - 2015        ( vô lí )

     vì ( x + 1 )^2 luôn lớn hơn hoặc bằng 0 với mọi x 

     vậy đa thức trên vô nghiệm  ( đúng ko các bạn ) 

Mọi người biết Trần Thu Hà như thế nào ko  :cướp nick  hu hu vừa mới cướp nick mình   

                                                         nói tục tiểu 

                                                   đi làm gian hồ 

                                           mình sẽ mét với online math luôn

a,đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x

ta có 2x^2 luôn dương

25 là số dương

Th1:8x là số âm

Suy ra f(x)2x^2-(-8x)+25(dpcm)

Th2:8x là số dương

Vì 2x^x\(\ge\)8x suy ra 2x^2-8x\(\ge\)0

Ko chắc vì làm theo suy nghĩ của t :V

cho mk sửa lại:

\(f\left(x\right)=2x^2-8x+25=2.\left(x^2-4x+4\right)+17=2.\left(x-2\right)^2+17>0\forall x\)

\(g\left(x\right)=-x^2+7x-43=-\left(x^2-7x+43\right)=-\left(x^2-7x+\frac{49}{4}-\frac{49}{4}+43\right)\)

\(=-\left(x-\frac{7}{2}\right)^2-\frac{123}{4}< 0\forall x\)

Vậy....

27 tháng 4 2016

\(F\left(x\right)=x^2-2x+2016\)

\(F\left(x\right)=x^2-2x+1+2015\)

\(F\left(x\right)=x^2-x-x+1+2015=x\left(x-1\right)-\left(x-1\right)+2015=\left(x-1\right)^2+2015\)

\(\left(x-1\right)^2+2015\ge2015>0\) với mọi x E R

=>F(x) vô nghiệm  (đpcm)

27 tháng 4 2016

xét đa thức F (x) = x2 - 2x +2016 có :

x>= 0 với mọi x 

2x >= 0 với mọi x 

2016 > 0 với mọi x  

suy ra : x-2x  +2016 > 0 vói mọi x 

hay đa thức F(x) = x-2x +2016 ko có nghiệm 

1 tháng 4 2017

M = 7x2y2 - 2xy - 5y3 - y2 + 5x4

N = -x2y2 - 4xy + 3y3 - 3y2 + 2x4

P = -3x2y2 + 6xy + 2y3 + 6y2 + 7

M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 + (-x2y2 - 4xy + 3y3 - 3y2 + 2x4) + (-3x2y2 + 6xy + 2y3 + 6y2 + 7)

M+N+P = 7x2y2 - 2xy - 5y3 - y2 + 5x4 - x2y2 - 4xy + 3y3 - 3y2 + 2x4 - 3x2y2 + 6xy + 2y3 + 6y2 + 7

M+N+P = (7x2y2 - x2y2 - 3x2y2) - (2xy + 4xy - 6xy) - (5y3 - 3y3 - 2y3) - ( y2 + 3y2 - 6y2 ) + ( 5x4 + 2x4 ) + 7

M+N+P = 3x2y2 + 2y2 + 7x4 + 7

Ta có : M+N+P = 3x2y2 + 2y2 + 7x4 + 7

Vì 3x2y2 + 2y2 + 7x4 \(\ge\) 0

7 > 0

=> 3x2y2 + 2y2 + 7x4 + 7 > 0

=> M+N+P > 0 với mọi x,y

=> Ít nhất 1 trong 3 đa thức đã cho có giá trị dương với mọi x,y

1 tháng 4 2017

Ta có:

M +N +P = (7x2y2 -2xy -5y3 -y2 +5x4) +(-x2y2 -4xy +3y3 -3y2 +2x4) +(-3x2y2 +6xy +2y3 +6y2 +7)

= 7x2y2 -2xy -5y3 -y2 +5x4 -x2y2 -4xy +3y3 -3y2 +2x4 -3x2y2 +6xy +2y3 +6y2 +7

= (7x2y2 -x2y2 -3x2y2) +(-2xy -4xy +6xy) +(-5y3 +3y3 +2y3) +(-y2 -3y2 +6y2) +(5x4 +2x4) + 7

= 3x2y2 + 2y2 + 7x4 + 7

\(x^2\ge0;y^2\ge0\Rightarrow3x^2y^2\ge0​\) (1)

\(y^2\ge0\Rightarrow2y^2\ge0\) (2)

\(x^4\ge0\Rightarrow7x^4\ge0\) (3)

7 > 0 (4)

Từ (1), (2), (3) (4) => \(3x^2y^2+2y^2+7x^4+7\ge0\)

Vậy ít nhất 1 trong 3 đa thức M, N, P có giá trị dương với mọi x, y

28 tháng 7 2021

B.|2X+3|

Học tốt

28 tháng 7 2021

B.I2x+3I

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.