Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F(x) = 1 + x2 + x4 + x6 + ... + x2018 + x2020
Ta có : \(x^2\ge0\forall x\)
\(x^4\ge0\forall x\)
\(x^6\ge0\forall x\)
...
\(x^{2020}\ge0\forall x\)
\(1>0\)
=> F(x) = \(1+x^2+x^4+x^6+...+x^{2018}+x^{2020}\ge1>0\)
=> F(x) vô nghiệm ( đpcm )
Ta có :
\(x^4\ge0\)
\(x^2\ge0\)
mà \(x^4>x^2\)=> \(x^4-x^2\ge0\)=> \(x^4-x^2+1\ge1\)
Hay f(x) \(\ge\)0 => f(x) ko có nghiệm ( đpcm )
\(a.x^2-x+1=0\)
\(x^2-x+1=0\)
\(x+1=0\)
\(x=-1\)
Vì \(x^2-x+1\ge0\)
=>Đa thức f(x) \(x^2-x+1\) không có nghiệm
\(b.x^2-2x+3\)
\(\left(x^2-2x+1\right)+2\)
\(\left(x-1\right)^2+2\)
\(\left(x-1\right)^2+2\ge0+2=2>0\)
Vậy g(x) vô nghiệm
Không chắc
x2 - x + 1 = 0 suy ra x + 1 =0 .Hay đấy!
a) \(f\left(x\right)=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy đa thức vô nghiệm
b) \(g\left(x\right)=x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2>0\forall x\)
Vậy đa thức vô nghiệm (đpcm)
x2+(x-3)2
=x2+(x-3)(x-3)
=x2+x2-3x-3x-3
=2x2-6x-3
=2x2-4x-2-1-2x
=2(x2-2x-1)-1-2x
=2(x-1)2-2x=1\(\ne0\)
=> Vô nghiệm
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
\(A\left(x\right)=x^2-4x+7\)
\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)
Vì \(\left(x-2\right)^2+3\ge3>0\) với mọi x E R
=>(1) không xảy ra
=>A(x) vô nghiệm (đpcm)
\(p\left(x\right)=x^4+x^3+x+1\)
\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)
Vậy............................
Đặt: \(x^2=t\)
\(x^4+x^2+2\)
\(\Rightarrow t^2+t+2\)
\(=t^2-t-t+1+1\)
\(=t\left(t-1\right)-\left(t-1\right)+1\)
\(=\left(t-1\right)\left(t-1\right)+1\)
\(=\left(t-1\right)^2+1>0\forall t\)
Phương trình \(t^2+t+2\)vô nghiệm thì chính là \(x^4+x^2+2\)vô nghiệm
ở chỗ phần đầu mình không hiểu cho lắm, bạn khỏi cần đặt x2=t thì mình mới hiẻu