Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(A=5x^2+7y^2-3xy\)
\(+\)
\(B=6x^2+9y^2-8xy\)
\(P=11x^2+16y^2-11xy\)
\(A=5x^2+7y^2-3xy\)
\(-\)
\(B=6x^2+9y^2-8xy\)
\(Q=-x^2-2y^2+5xy\)
A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2
= 5x2 + 5
Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)
=> A(x) luôn dương với mọi x
B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9
= -x2 - 2
Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)
=> B(x) luôn âm với mọi x
\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)
\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)
M dương khi x,y trái dấu
x,y trái dấu vậy N dương khi x dương y âm
x dương y âm thì Q âm
=> M,N,Q không thể cùng >0 và = nhau =0 khi x hoặc y = 0
Ta có:
\(x^4\) và \(3x^2\)\(\ge0\) (do có số mũ chẵn )
Nếu Q(x)=\(x^4+3x^2+1=0\)
\(\Rightarrow x^4+3x^2=-1\)
Mà \(x^4;3x^2\ge0\)
\(\Rightarrow q\left(x\right)=x^4+3x^2+1\) không có nghiệm
\(\Rightarrow dpcm\)
Đa thức Q(x)=x^4+3x^2+1
Ta có:
x^4 >,=0 với mọi x
3x^2>,=0 với mọi x
1>0
=>Đa thức Q(x)=x^4+3x^2+1>0
nên đa thức Q(x) không có nghiệm
\(a)\)
\(\text{Ta có:}\)
\(x^2-2=0\)
\(\rightarrow x^2=x\)
\(\rightarrow x=\pm\sqrt{2}\)
Vậy ...
\(b)\)
\(\text{Ta có:}\)
\(x^2+5x+7\)
\(\rightarrow x^2+2x\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2\ge0\)
\(\rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy ...
a, Đặt \(x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
b, Ta có : \(Q\left(x\right)=x^2+5x+7=x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy đa thức ko có nghiệm
Đặt Q(x) = 0
=> x2 + 5x - 3 = 0
=> x2 + 5x = 3
=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)
Đặt Q(x) = 0
=> x2 + 5x - 3 = 0
=> x2 + 5x = 3
=> Q(x) vô nghiệm (vì x2 + 5x ≥ 0 + 1 > 0)