K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

ta có 

B=\(4x^2+y^2+9-4xy+12x-6y+7=\left(2x-y+3\right)^2+7>0\left(ĐPCM\right)\)

Ta có: 

\(B=4x^2+y^2+12x-4xy-6y+16\)

\(\Leftrightarrow B=4x^2+y^2+9-4xy+12x-6y+7\)

\(\Leftrightarrow B=\left(2x-y+3\right)^2+7\)

Mà \(\left(2x-y+3\right)^2\ge0\Rightarrow\left(2x-y+3\right)^2+7>0\)

2 tháng 1 2018

\(B=4x^2+y^2+12x-4xy-6y+16\)

\(=\left(4x^2+y^2+9-4xy-6y+12x\right)+7\)

\(=\left[\left(2x\right)^2+y^2+3^2-2.2x.y-2.y.3+2.2x.3\right]+7\)

\(=\left(2x-y+3\right)^2+7\)

Ta có :

\(\left(2x-y+3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(2x-y+3\right)^2+7\ge7>0\forall x,y\)

Hay B > 0 với mọi x,y

3 tháng 1 2018

Ta có : \(B=\left(2x\right)^2-2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+y^2-6y+16\)

\(=\left(2x-y+3\right)^2-y^2+6y-9+y^2-6y+16\)

\(=\left(2x-y+3\right)^2+7\)

\(\left(2x-y+3\right)^2\ge0\forall x,y\Rightarrow B\ge7\)

hay B > 0 với mọi x,y

17 tháng 12 2023

A = 4x2 - 4xy + y2 + 12x -6y + 16

    =(2x - y)2 + 6.(2x - y) + 16

    

8 tháng 7 2018

1/

a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

2/

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x-1=0 <=> x=1

Vậy Pmax = 4 khi x = 1

b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy Mmax = 3/4 khi x = 1/2, y = -3

16 tháng 8 2018

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

3 tháng 9 2018

     \(4x^2+y^2+4xy+4x+2y+2\)

\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)

\(=\left(2x+y+1\right)^2+1>0\forall x,y\)

Chúc bạn học tốt.

20 tháng 10 2018

phân tích đa thức thành nhân tử:=(2x+y-1)2

10 tháng 7 2021

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)

Vậy ta có đpcm 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)

Vậy ta có đpcm 

10 tháng 7 2021

Trả lời:

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy A > 0 với mọi x 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1\ge1>0\forall x;y\)

Vậy B > 0 với mọi x;y