Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4x^2+y^2+12x-4xy-6y+16\)
\(=\left(4x^2+y^2+9-4xy-6y+12x\right)+7\)
\(=\left[\left(2x\right)^2+y^2+3^2-2.2x.y-2.y.3+2.2x.3\right]+7\)
\(=\left(2x-y+3\right)^2+7\)
Ta có :
\(\left(2x-y+3\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(2x-y+3\right)^2+7\ge7>0\forall x,y\)
Hay B > 0 với mọi x,y
Ta có : \(B=\left(2x\right)^2-2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+y^2-6y+16\)
\(=\left(2x-y+3\right)^2-y^2+6y-9+y^2-6y+16\)
\(=\left(2x-y+3\right)^2+7\)
Vì \(\left(2x-y+3\right)^2\ge0\forall x,y\Rightarrow B\ge7\)
hay B > 0 với mọi x,y
A = 4x2 - 4xy + y2 + 12x -6y + 16
=(2x - y)2 + 6.(2x - y) + 16
1/
a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
2/
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x-1=0 <=> x=1
Vậy Pmax = 4 khi x = 1
b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy Mmax = 3/4 khi x = 1/2, y = -3
a) Ta có:
\(x^2+4x+5\)
\(=x^2+2.x.2+4+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)
\(\Rightarrow x^2+4x+5>0\forall x\)
b) Ta có:
\(x^2-x+1\)
\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x^2-x+1>0\forall x\)
c) Ta có:
\(12x-4x^2-10\)
\(=-\left(4x^2-12x+10\right)\)
\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)
\(=-\left(2x-3\right)^2-1\)
Vì \(-\left(2x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)
\(\Rightarrow12x-4x^2-10< -1\)
\(4x^2+y^2+4xy+4x+2y+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)
\(=\left(2x+y+1\right)^2+1>0\forall x,y\)
Chúc bạn học tốt.
\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)
Vậy ta có đpcm
\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)
Vậy ta có đpcm
ta có
B=\(4x^2+y^2+9-4xy+12x-6y+7=\left(2x-y+3\right)^2+7>0\left(ĐPCM\right)\)
Ta có:
\(B=4x^2+y^2+12x-4xy-6y+16\)
\(\Leftrightarrow B=4x^2+y^2+9-4xy+12x-6y+7\)
\(\Leftrightarrow B=\left(2x-y+3\right)^2+7\)
Mà \(\left(2x-y+3\right)^2\ge0\Rightarrow\left(2x-y+3\right)^2+7>0\)