K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

12 +22+32+...+n2

= 1.(2-1)+2.(3-1)+3.(4-1)+...+n.(n+1-1)

= (1.2+2.3+3.4+...+n.n(n+1)) - (1+2+3+...+n)

Dat A = 1.2+2.3+3.4+...+n.(n+1)

=> 3A = 1.2.3+2.3.3+3.4.3+...+n.(n+1).3

3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+n.(n+1).(n+2-n+1)

3A = (1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)) - (1.2.3+2.3.4+...+(n-1).n.(n+1))

3A = n.(n+1).(n+2)

\(\Rightarrow A=\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

ta co: 1+2+...+n = n.(n+1)/2

=> \(1^2+2^2+...+n^2=\frac{n.\left(n+1\right).\left(n+2\right)}{3}-\frac{n.\left(n+1\right)}{2}=\frac{n.\left(n+1\right).\left(2n+1\right)}{6}\)

cop sai de hay sao z bn???

8 tháng 10 2020

Sửa đề : 12 + 22 + 32 + ... + n2 = \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

VT <=> 1 ( 2 - 1 ) + 2 ( 3 - 1 ) + 3 ( 4 - 1 ) + ... + n [ ( n + 1 ) - 1 ]

= [ 1 . 2 + 2 . 3 + 3 . 4 + ... + n ( n + 1 ) ] - ( 1 + 2 + 3 + 4 + ... + n ) 

Đặt A = 1 . 2 + 2 . 3 + 3 . 4 + ... + n ( n + 1 ) . Ta có :

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 3n ( n + 1 )

=> 3A = 1.2.3 + 2.3 ( 4 - 1 ) + 3.4 ( 5 - 2 ) + ... + n ( n + 1 ) [ ( n + 2 ) - ( n - 1 ) ]

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n ( n + 1 ) ( n + 2 ) -  ( n - 1 ) n ( n + 1 )

=> 3A = n ( n + 1 ) ( n + 2 )

=> A = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

=> VT = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)- ( 1 + 2 + 3 + 4 + ... + n ) 

\(\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{\left(n+1\right)n}{2}\)

\(=\frac{2n\left(n+1\right)\left(n+2\right)-3n\left(n+1\right)}{6}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{6}=VP\)( Đpcm )

12 tháng 7 2017

Sorry! Câu A là 32 nha!

5 tháng 12 2017

Ta có:

\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)

=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)

=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)

=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)

24 tháng 5 2018

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

17 tháng 2 2017

100 + 100 + 100

Các bạn trả lời nhanh nhất mình k cho mà bạn nào trả lời nhanh nhất thì các bạn k cho bạn đấy mình sẽ k lại cho

17 tháng 2 2017

trần khánh lâm ! = 300

kick mk nhé !

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

27 tháng 12 2015

a) Ta có:

   \(\frac{1.3.5...39}{21.22.23...40}=\frac{1.3.5.7.11.13.15.17.19}{22.24.26.28.30.32.34.36.38}\)=\(\frac{1.3.5.7.9.11.13.15.17.19}{2.11.2^3.3.2.13.2^2.7.2.15.2^5.2.17.2^2.9.2.19.2^3.5}\)=\(\frac{1}{2.2^3.2.2^2.2.2^5.2.2^2.2.2^3}\)=\(\frac{1}{2^{1+3+1+2+1+5+1+2+1+3}}\)=\(\frac{1}{2^{20}}\)

            Vậy \(\frac{1.3.5...39}{21.22.23...40}\)\(\frac{1}{2^{20}}\) 

27 tháng 12 2015

tick cho minh