K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Câu hỏi của nguyen van quyen - Toán lớp 8 - Học toán với OnlineMath

27 tháng 7 2017

b) Xét VP ta có :

\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=a^3+ab^2+ac^2-ab^2-abc-ca^2+ba^2+b^3+bc^2-ab^2-bc^2-abc+ca^2+cb^2+c^3-abc-bc^2-c^2a\)

\(=a^3+b^3+c^3-abc-abc-abc\)

\(=a^3+b^3+c^3-3abc\)

\(=VT\)

Vậy đẳng thức đã được Cm

3 tháng 9 2016

VT = (3a + 2b - 1)(a + 5) - 2b(a - 2)

= 3a2 + 2ab - a + 15a + 10b - 5 - 2ab + 4b

= 3a2 + 14a + 14b - 5 

= 3a2 + 9a + 5a + 15 + 14b - 20

= 3a(a + 3) + 5(a + 3) + 2(7b - 10)

= (3a + 5)(a + 3) + 2(7b - 10)

= VP (đpcm)

3 tháng 9 2016

Đăng từng câu thôi

19 tháng 12 2016

cau pha ca 2 ve ra di

19 tháng 12 2016

ta có :

(a+b)3-(a-b)3= a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3

=6a2b+2b3

=2b(3a2+b2)

vậy (a+b)3-(a-b)3=2b(3a2+b2)

12 tháng 6 2017

Có: \(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\left(đpcm\right)\)

Ta có:\(x+y=a\)

=>\(x^2+2xy+y^2=a^2\)

=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)

Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)

=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)

=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)

b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

10 tháng 9 2017

Tại sao lại có +6abc vậy bạn , ở câu b) đó hiuhiu

3 tháng 9 2018

Bài 1:

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac+a^2+ab+ac+a^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+3bc\right)\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Bài 2:

Từ câu 1b ta đã chứng minh được:

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Thay a + b + c = 0 vào ta được

\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

5 tháng 9 2018

Cảm ơn b nhìu

23 tháng 9 2020

a) \(\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left[x^2+\left(a+b\right)x+ab\right]\left(x+c\right)\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

c) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ca\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

23 tháng 9 2020

Nhầm đoạn cuối là \(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

26 tháng 8 2017

Có: a3 + b3+ c3- 3abc

= (a+b)3- 3a2b - 3ab2- 3abc + c3

=(a+b) +c - 3ab.(a+b+c)

=(a + b + c). [(a+b) - (a+b).c+c2) - 3ab.(a+b+c)

=(a + b + c). ( a + 2ab + b2 - ac - bc + c2  - 3ab.(a + b + c)

=(a + b + c). ( a2  + 2ab + b2 - ac - bc + c2 -3ab)

=(a + b + c).( a +  b2  +  c2 - ab - bc - ca)

=>đpcm

chúc bạn học tốt