Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
\(\cos\left(x\right)^4+\sin\left(x\right)^2\cos\left(x\right)^2+\sin\left(x\right)^2\\ =\left(\cos\left(x\right)^2+\sin\left(x\right)^2\right)\cos\left(x\right)^2+\sin\left(x\right)^2\\ =\cos\left(x\right)^2+\sin\left(x\right)^2\\ =1\)
\(\cos\left(x\right)^4-\sin\left(x\right)^4+2\sin\left(x\right)^2\\ =\left(\cos\left(x\right)^2-\sin\left(x\right)^2\right)\left(\cos\left(x\right)^2+\sin\left(x\right)^2\right)+2\sin\left(x\right)^2\\ =\cos\left(2x\right)\cdot1+2\sin\left(x\right)^2\\ =\cos\left(x\right)^2-\sin\left(x\right)^2+2\sin\left(x\right)^2\\ =\cos\left(x\right)^2+\sin\left(x\right)^2\\ =1\)
a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)
b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)
\(=\frac{1+tanx}{1+tanx}=1\)
c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)
\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)
Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)
\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)
\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)
d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)
Có \(\sin^2x+\cos^2x=1\Rightarrow2\sin^2x=1-\cos^2x+\sin^2x\)
\(\Rightarrow1+\sin^2x=2\sin^2x+\cos^2x\)
\(\Rightarrow VT=\frac{2\sin^2x+\cos^2x}{\cos^2x}=2\tan^2x+1\)
\(VP=\frac{2\sin^2x-1}{\sin^4x}=\frac{\sin^2x+\sin^2x-1}{\sin^4x}=\frac{\sin^2x-\cos^2x}{\sin^4x}\)
\(=\frac{\left(\sin^2x-\cos^2x\right).1}{\sin^4x}=\frac{\left(\sin^2x-\cos^2x\right)\left(\sin^2x+\cos^2x\right)}{\sin^4x}=\frac{\sin^4x-\cos^4x}{\sin^4x}\)
\(=1-\cot^4x\)=VT
a)\(\left(\sin x+\cos x\right)^2=\sin^2x+\cos^2x+2\sin x\cdot\cos x\)
\(=1+2\cdot\frac{1}{2}=1+1=2\)
\(\Rightarrow\sin x+\cos x=\sqrt{2}\)
b)\(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cdot\cos^2x\)
\(=1^2-2\cdot\frac{1}{2}^2=1-\frac{1}{2}=\frac{1}{2}\)
c)\(\left|\sin x-\cos x\right|^2=\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x\cdot\cos x=1-2\cdot\frac{1}{2}=1-1=0\)
\(\left|\sin x+\cos x\right|=0\)
\(\sin^6x+\cos^6x\\ =\left(\sin^2x\right)^3+\left(\cos^2x\right)^3\\ =\left(\sin^2x+\cos^2x\right)^3-3\sin^2x\cos^2x\left(\sin^2x+\cos^2x\right)\\ =1-3\sin^2x\cos^2x\left(đpcm\right)\)
\(sin^6x+cos^6x\)
=\(\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
=\(sin^4x-sin^2x.cos^2x+cos^4x\)
=\(\left(1-2sin^2x.cos^2x\right)-sin^2x.cos^2x\)
=\(1-3sin^2x.cos^2x\)(đpcm)
➞\(sin^6x+cos^6x\)=\(1-3sin^2x.cos^2x\)
\(\left(sinx+cosx\right)^2=\frac{25}{16}\Rightarrow sin^2x+cos^2x+2sinxcosx=\frac{25}{16}\)
\(\Rightarrow2sinxcosx=\frac{25}{16}-1=\frac{9}{16}\Rightarrow A=\frac{9}{32}\)
\(B^2=\left(sinx-cosx\right)^2=1-2sinx.cosx=1-\frac{9}{16}=\frac{7}{16}\Rightarrow B=\pm\frac{\sqrt{7}}{4}\)
\(C=\left(sinx+cosx\right)\left(sinx-cosx\right)=\frac{5}{4}.\left(\pm\frac{\sqrt{7}}{4}\right)=\pm\frac{5\sqrt{7}}{16}\)