Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VT=\left(\dfrac{2 \sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}VT=(8−223−6−3216)⋅61
=\left(\dfrac{\sqrt{2} \cdot \sqrt{2} \cdot \sqrt{3}-\sqrt{6}}{\sqrt{2^{2} \cdot 2}-2}-\dfrac{\sqrt{6^{2} .6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}=(22⋅2−22⋅2⋅3−6−362.6)⋅61
=\left(\dfrac{\sqrt{2} \cdot \sqrt{6}-\sqrt{6}}{2 \sqrt{2}-2}-\dfrac{6 . \sqrt{6}}{3}\right) \cdot \dfrac{1}{\sqrt{6}}=(22−22⋅6−6−36.6)⋅61
=\left[\dfrac{\sqrt{6}(\sqrt{2}-1)}{2(\sqrt{2}-1)}-\dfrac{6 \sqrt{6}}{3}\right] \cdot \dfrac{1}{\sqrt{6}}=[2(2−1)6(2−1)−366]⋅61
=\left(\dfrac{\sqrt{6}}{2}-2 \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}=(26−26)⋅61
=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4 \sqrt{6}}{2}\right) \cdot \dfrac{1}{\sqrt{6}}=(26−246)⋅61
=\left(\dfrac{-3}{2} \sqrt{6}\right) \cdot \dfrac{1}{\sqrt{6}}=(2−36)⋅61
=-\dfrac{3}{2}=-1,5=V P=−23=−1,5=VP.
b) VT=\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right): \dfrac{1}{\sqrt{7}-\sqrt{5}}VT=(1−214−7+1−315−5):7−51
=\left(\dfrac{\sqrt{7} \cdot \sqrt{2}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{5} \cdot \sqrt{3}-\sqrt{5}}{1-\sqrt{3}}\right): \dfrac{1}{\sqrt{7}-\sqrt{5}}=(1−27⋅2−7+1−35⋅3−5):7−51
=\left[\dfrac{\sqrt{7}(\sqrt{2}-1)}{1-\sqrt{2}}+\dfrac{\sqrt{5}(\sqrt{3}-1)}{1-\sqrt{3}}\right]: \dfrac{1}{\sqrt{7}-\sqrt{5}}=[1−27(2−1)+1−35(3−1)]:7−51
=(-\sqrt{7}-\sqrt{5})(\sqrt{7}-\sqrt{5})=(−7−5)(7−5)
=-(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})=−(7+5)(7−5)
=-(7-5)=-2=VP=−(7−5)=−2=VP.
c) V T=\dfrac{a \sqrt{b}+b \sqrt{a}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}VT=abab+ba:a−b1
=\dfrac{\sqrt{a} \cdot \sqrt{a} \cdot \sqrt{b}+\sqrt{b} \cdot \sqrt{b} \cdot \sqrt{a}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}=aba⋅a⋅b+b⋅b⋅a:a−b1
=\dfrac{\sqrt{a} \cdot \sqrt{a b}+\sqrt{b} \cdot \sqrt{a b}}{\sqrt{a b}}: \dfrac{1}{\sqrt{a}-\sqrt{b}}=aba⋅ab+b⋅ab:a−b1
=\dfrac{\sqrt{a b}(\sqrt{a}+\sqrt{b})}{\sqrt{a b}} \cdot(\sqrt{a}-\sqrt{b})=abab(a+b)⋅(a−b)
=(\sqrt{a}+\sqrt{b}) \cdot(\sqrt{a}-\sqrt{b})=(a+b)⋅(a−b)
=a-b=V P=a−b=VP.
d) VT=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)VT=(1+a+1a+a)(1−a−1a−a)
=\left(1+\dfrac{\sqrt{a} \cdot \sqrt{a}+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{\sqrt{a} \cdot \sqrt{a}-\sqrt{a}}{\sqrt{a}-1}\right)=(1+a+1a⋅a+a)(1−a−1a⋅a−a)
=\left[1+\dfrac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}\right]\left[1-\dfrac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}\right]=[1+a+1a(a+1)][1−a−1a(a−1)]
=(1+\sqrt{a})(1-\sqrt{a})=(1+a)(1−a)
=1-(\sqrt{a})^{2}=1-a=V P=1−(a)2=1−a=VP
b: \(=\left(\sqrt{ab}+\dfrac{2\sqrt{ab}}{a}-\sqrt{\dfrac{a^2+1}{ab}}\right)\cdot\sqrt{ab}\)
\(=ab+\dfrac{2ab}{a}-\sqrt{a^2+1}=ab+2b-\sqrt{a^2+1}\)
c: \(=2\sqrt{6b}-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)
\(=2\sqrt{6b}-18\sqrt{2}+20\sqrt{3}-4\sqrt{3}\)
\(=2\sqrt{6n}-18\sqrt{2}+16\sqrt{3}\)
d: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)
(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)
= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)
= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)
= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)
= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)
= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)
bài 2)
a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
Câu 2:
a: \(=2\left(\sqrt{4+\sqrt{5}-1}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\cdot\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=8\)
b: \(=\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{a-1}\cdot\left(\dfrac{a+1-2}{a+1}\right)^2\)
\(=\dfrac{2\left(a+1\right)}{a-1}\cdot\dfrac{\left(a-1\right)^2}{\left(a+1\right)^2}=\dfrac{2\left(a-1\right)}{a+1}\)
a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)