Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\forall x\)
Vậy ta có đpcm
\(B=4x^2-12x+11=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\forall x\)
Vậy ta có đpcm
\(C=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy ta có đpcm
\(\hept{\begin{cases}A=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\\B=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\\C=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
a)
\(=x^2+2.1,5x+1.5^2+0,75\)
\(=\left(x+1.5\right)^2+0,75\)
Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương
b)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)
Lập luận tương tự câu a), được biểu thức luôn dương
c)
\(=x^2+2xy+y^2+x^2-2x+1+1\)
\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)
Lập luận tương tự
chứng minh các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a)E=12x-4x^2-11 b)F=x-x^2-1
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
a) 5x^2-(2x+1)(x-2)-x(3x+3)+7
= 5x^2-2x^2+4x-x+2-3x^2-3x+7
= 9
Suy ra 5x^2-(2x+1)(x-2)-x(3x+3)+7 ko phụ thuộc vào giá trị của biến x
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
c) (5x-2)(x+1)-(x-3)(5x+1)-17(x-2)
= 5x^2+5x-2x-2-5x^2-x-15x-3-17x+2
= -3
Suy ra (5x-2)(x+1)-(x-3)(5x+1)-17(x-2) ko phụ thuộc vào giá trị của biến x
d) (4x-5)(x+2)-(x+5)(x-3)-3x^2-x
= 4x^2+8x-5x-10-x^2+3x-5x+15-3x^2-x
=5
Suy ra (4x-5)(x+2)-(x+5)(x-3)-3x^2-x ko phụ thuộc vào giá trị của biến x
k mik nha
Chúc bạn học giỏi
A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương
B = x2 - x + 1 = x2 - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương
C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương
A = x2 - 8x +20 = x2 - 2*x*4 + 42 + 4 = (x - 4)2 + 4 >= 4 => Biểu thức luôn dương
B = x2 - x + 1 = x2 - 2*x*1/2 + 1/4 + 3/4 = (x - 1/2)2 + 3/4 >= 3/4 => Biểu thức luôn dương
C = 4x2 -12x + 11 = 4x2 - 2*2x*3 + 9 + 2 = (2x - 3)2 +2 >= 2 => Biểu thức luôn dương
K cho mình nha !!!!!!!!!!!!
a)
\(A=x^2-4x+18=\left(x^2-4x+4\right)+14=\left(x-2\right)^2+14\ge14>0\)
\(B=x^2-x+2=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)
\(C=x^2-2xy+2y^2-2y+15\)
\(C=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+14\)
\(C=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\)
Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM
mình làm rồi nhé, bạn kham khảo link