Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức AM-GM :
\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)
b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)
\(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)
Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
A)\(A^2+B^2\ge AB+AB\)
\(\Leftrightarrow\)\(A^2+B^2\ge2AB\)
\(\Leftrightarrow A^2-2AB+B^2\ge0\)
\(\Leftrightarrow\left(A+B\right)^2\ge0\)(luôn đúng)
Vậy \(A^2+B^2\ge AB+AB\)(đpcm)
A) \(A^2+B^2\ge2AB\Leftrightarrow\left(A-B\right)^2\ge0\)(luôn đúng)
B)\(A^2B=A\cdot A\cdot B;AB^2=A\cdot B\cdot B\)
áp dụng BĐT AM-GM
\(A\cdot A\cdot B\le\dfrac{A^3+A^3+B^3}{3};A\cdot B\cdot B\le\dfrac{A^3+B^3+B^3}{3}\)
cộng 2 vế của BĐT cho nhau
\(\Rightarrow A^2B+AB^2\le A^3+B^3\left(đpcm\right)\)
C)tương tự câu B) ta có
\(A^3B\le\dfrac{A^4+A^4+A^4+B}{4};AB^3\le\dfrac{A^4+B^4+B^4+B^{\text{4}}}{4}\)
cộng từng vế của BĐT ta có đpcm
1.b
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung
2 . ta có
\(\left(x-y\right)^2\ge0\)
<=> x2-2xy+y2 ≥ 0
<=> x2+4xy-2xy+y2 ≥ 4xy
<=> x2+2xy+y2 ≥ 4xy
<=> (x+y)2 ≥ 4xy
CMTT
(y+z)2 ≥ 4yz
(z+x)2 ≥ 4zx
nhân các vế của bđt ta có
[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2
<=> (x+y)(y+z)(z+x) ≥ 8xyz