Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(H=30+2^4\left(2+2^2+2^4+2^4\right)+...+2^{56}\left(2+2^2+2^3+2^4\right)\)
\(H=30\cdot1+30\cdot2^4+...+30\cdot2^{56}\)
\(H=30\left(1+2^4+....+2^{56}\right)⋮15;3\)
______
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(H=14+2^3\left(2+2^2+2^3\right)+...+2^{57}\left(2+2^2+2^3\right)\)
\(H=14\cdot1+14\cdot2^3+...+14\cdot2^{57}\)
\(H=14\left(1+2^3+...+2^{57}\right)⋮7\)
A=( 2+2^2) + (2^3+2^4) +......+ (2^59 + 2^60)
A=2.(1+2) + 2^3. (1+2) +.....+ 2^59.(1+2)
A=2.3+2^3.3+......+ 2^59.3
A= 3. (2+2^3+....+2^59)
vì 3 chia hết cho 3 suy ra A chia hết cho 3Nguyễn Thị kim Oanh
tick nha
đừng dại dột bấm vào Đúng 0 này của nó sẽ hối hận cả đời
A = 2 + 22 +23 + 24 +...+260 ( có 60 số hạng)
A = (2+22 +23) + (24+25+26) + ...+ (258 +259 + 260)
A = 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^58.(1+2+2^2)
A = 2.7 + 2^4.7 + ...+ 2^58.7
A = 7.(2+2^4+...+2^58) chia hết cho 7
A chia hết cho 15 thì bn làm tương tự nha! Gợi ý: nhóm 4 số hạng với nhau
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N